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AVANÇANDO SIMULAÇÕES ESPACIAIS NA AGRICULTURA:
APRESENTANDO GSSAT2, UMA FERRAMENTA APRIMORADA

BASEADA NO DSSAT

RESUMO

O Decision Support System for Agrotechnology Transfer (DSSAT) é um conjunto de ferra-
mentas para simulação de crescimento e desenvolvimento de plantas amplamente conhe-
cido; ele acumula pesquisa, contribuições e validações por décadas de uso e desenvolvi-
mento. Em todo o mundo, o DSSAT desempenha um papel importante para a pesquisa em
áreas como mudanças climáticas e segurança alimentar. Uma grande limitação do DSSAT
é sua dificuldade em trabalhar em contextos geoespaciais; ele é desenhado para executar
simulações baseado em dados de entrada isolados, sem a habilidade de contextualizá-
los em um espaço geográfico. Previamente, o International Fertilizer Development Center
(IFDC) introduziu o Geographic Information Support System for Agrotechnology Transfer
(GSSAT), uma ferramenta baseada em DSSAT para conduzir simulações geoespaciais em
formato de grade. Entretanto, o GSSAT eventualmente tornou-se tecnologicamente obso-
leto, o que implica na impossibilidade de utilizá-lo em sistemas modernos. Este trabalho
introduz GSSAT2: uma ferramenta web, desenhada para suceder o GSSAT, também adici-
onando funcionalidades importantes como a coleta autônoma de dados e paralelismo entre
simulações. As técnicas e tecnologias utilizadas no desenvolvimento permitiram que de-
senvolvêssemos uma plataforma robusta e de fácil manutenção, capaz de rodar simulações
baseadas em DSSAT em contextos geoespaciais, também deixando espaço para a imple-
mentação de melhorias e o rápido desenvolvimento de novas funcionalidades devido ao
ferramental utilizado.

Palavras-Chave: Aplicações Web, Computação Distribuída, Decision Support System for
Agrotechnology Transfer, Modelos de Simulação de Culturas, Sistemas de Informação
Geográfica.



ADVANCING SPATIAL SIMULATIONS IN AGRICULTURE:
INTRODUCING GSSAT2, AN ENHANCED DSSAT-BASED TOOL

ABSTRACT

The Decision Support System for Agrotechnology Transfer (DSSAT) is a widely known toolkit
for plant growth and development simulation; it accumulated research, contributions and val-
idations over decades of use and development. Worldwide, DSSAT plays an important role
for research in fields like climate change and food security. One major limitation of the
DSSAT toolkit is to handle spatial contexts; it is primarily designed to run simulations based
on isolated input data, without the ability to contextualize these data points in a geographical
space. In the past, the International Fertilizer Development Center (IFDC) introduced Geo-
graphic Information Support System for Agrotechnology Transfer (GSSAT), a DSSAT-Based
tool to allow geospatial-based simulations on a grid model. However, GSSAT eventually
became technologically obsolete, implying inability to use it on modern systems. This work
introduces GSSAT2: a web-based tool designed to succeed GSSAT, adding important fea-
tures like autonomous data collection and simulation parallelism. The technologies and
techniques used in the development allowed us to develop a robust and maintainable plat-
form, able to run DSSAT-Based simulations on spatial contexts, as well as leaving room for
improvement and fast development of extra features due to the employment tooling.

Keywords: Crop Simulation Models, Distributed Computing, Decision Support System for
Agrotechnology Transfer, Geographic Information System, Web Applications.
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1. INTRODUCTION

Geographic Information Systems (GIS) platforms have proven their utility across a
myriad of fields since their conception in the 1960s, with applications including land-usage
planning, natural hazards assessment, wildlife habitat analysis and more [1]. Over the
decades, these platforms have evolved from basic tools to comprehensive systems capable
of intricate spatial analysis, propelled by continuous technological advancements, increased
computational power, and the introduction of machine learning and artificial intelligence. In
the agricultural sector, GIS platforms have served for tasks such as spatial yield forecast,
risk analysis and climate change impact studies [2].

The development and refinement of GIS platforms, especially those designed for
agricultural applications, have become increasingly important in the face of escalating global
food demand and the escalating challenges posed by climate change. These platforms can
integrate disparate spatial and non-spatial data sets, allowing researchers, farmers, and pol-
icymakers to visualize and analyze complex geospatial relationships, thus enabling informed
decision-making [3, 2, 4]. This integration of data contributes to sustainable agriculture and
food security on a global scale.

Despite the significant strides made in developing GIS platforms and their applica-
tions in agriculture, certain limitations persist. Notably, the Geographic Information Support
System for Agro-Technology Transfer (GSSAT), developed by the International Fertilizer De-
velopment Center, which integrated the crop system model (CSM) from the DSSAT toolkit
with a GIS platform [4] has become technologically outdated [5]. Challenges such as com-
patibility issues with modern operating systems, an unintuitive user interface, and other exe-
cution difficulties limit the system’s usefulness. The legacy technologies underlying GSSAT
poses significant challenges to the platform’s further development and evolution.

To address these issues and further contribute to the domain of GIS platforms for
agricultural applications, this paper presents GSSAT2. As an evolution of its predecessor,
GSSAT2 embodies advancements in technology, harnessing the power of cloud computing
and web applications to offer improved compatibility with modern operating systems and
a more intuitive user interface design. GSSAT2 is engineered for efficient, spatially explicit
crop growth simulations, providing researchers, farmers, and policymakers a dynamic tool to
make informed decisions on complex agricultural issues. This paper elaborates on the tech-
nical implementation details of GSSAT2, its potential caveats, and challenges encountered
during its development. Furthermore, it includes usage reports, highlighting its performance
and capabilities in real-world scenarios.
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2. RELATED MATERIALS

The convergence of Geographic Information Systems (GIS) and crop simulation
models has been a significant focus in the literature, elucidating its potential to augment
efficiency in agriculture, fortify food security, and render a more profound comprehension of
the impact of changing environmental conditions [6, 7, 8].

For instance, Pasquel et al [6], Coucheney et al [7] and Strand et al [8] studied
problems of spatially scaling models for GIS usage: Pasquel et al [6] raised questions about
the evaluation of the performance of spatialized crop models, especially when down scaled
to finer scales. Similarly, Coucheney et al [7] delved into the implications of soil input data
and the employment of different methods to upscale or downscale data, the researchers in-
vestigated how aggregating soil input data based on the majority of soil mapping units within
an area affected spatially gridded simulations using the soil-vegetation model CoupModel.
Yet in a similar vein, Strand et al [8] investigated the complexities involved in estimating areal
averages, focusing on methodologies that involve dividing the entire area into regions, fitting
a surface through the data points, and using physical model building techniques. Strand
shed light on the significant challenges that come with scaling models, whether scaling up
or down, with an emphasis on the effect on crop yield models.

Shelia et al [2] highlighted the limitations of different existing models for simulat-
ing crop growth in geospatial contexts and the development of CRAFT, a tool designed for
yield forecasting, risk analysis, and climate change impact studies using gridded crop sim-
ulations powered by DSSAT, APSIM, and SARRA-H. Similarly, a study by Priya et al [9]
explores the implementation of the Spatial-EPIC crop growth model in a GIS environment.
It effectively combines high-resolution climatic data interpolation across large scales and ro-
bust datasets, providing location-specific and detailed insights into potential agricultural out-
comes. This approach accentuates the value of multidimensional data in agricultural mod-
eling and decision-making, despite challenges associated with data availability and quality
in developing regions. In line with this, McNider et al [3] described GriDSSAT, an innovative
modeling system that effectively merges DSSAT and gridded simulations. This integration
facilitates a comprehensive analysis of the benefits and repercussions of irrigation, thereby
underlining the practicality and value of such integrated, GIS-enabled modeling approaches.

In the context of employing web-based software to facilitate user-friendly and easy-
to-use graphical interfaces, Sebben da Cunha [10] proposed the development of a new
graphical interface for the DSSAT CSM. This initiative was designed to leverage web tech-
nologies, aiming to enhance user-friendliness and promote multiplatform compatibility.

Finally, as elucidated by Fachinello [5], the development of a GSSAT2 had already
been a subject of discussion and prior endeavors had been executed. Regrettably, these
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initiatives were unsuccessful due to challenges encountered during the development pe-
riod [5].
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3. BACKGROUND

3.1 DECISION SUPPORT SYSTEM FOR AGROTECHNOLOGY TRANSFER

The Decision Support System for Agrotechnology Transfer (DSSAT) is an advanced
computational platform that leverages crop simulation models for over 42 crops to simulate
the dynamics of soil-plant-atmosphere interactions [11], being it one of the most important
tool used for crop growth simulation [12]. Through years of dedicated research, DSSAT has
been refined into a robust decision-making tool that, despite the growth in its application
domain and expansion of modeling networks, has maintained remarkable stability, retaining
much of its structure from decades ago [12, 13]. Fortran1, its foundational programming
language, continues to be utilized, underlining the system’s enduring and reliable design.

As visualized in Figure 1, DSSAT is composed by a collection of support software
packages, applications, the Crop System Model (CSM), the Shell (user interface) and a
collection of databases [13].

Figure 1. Architectural overview of the DSSAT toolkit, illustrating the integration between
DSSAT components, such as the database, the support software package, auxiliary ap-
plication modules and the main CSM. The figure shows how all the modules feed data to
the CSM, and how they are all connected to the user interface at some point. Figure from
Hoogenboom et al [13].

All input and output (I/O) files for DSSAT adhere to a stringent naming convention
(see Figure 2) and are composed of plain ASCII text files, which consist of tables describing
the I/O data [13]. This rigorous protocol has enabled the development of numerous tools that
seamlessly integrate with DSSAT, such as the DSSAT-R package [14], jDSSAT [15], DSSAT
Web [10], Pythia [16], CropTest [17], GSSAT and GSSAT2 itself.

1https://fortran-lang.org/

https://fortran-lang.org/
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Figure 2. Overview of the DSSAT databases, that feed data into the CSM. The figure il-
lustrates that files containing weather and soil data, as well as experiment and genetics
parameters, are fed to the CSM, that produces daily output files and summary output files.
Figure from Hoogenboom et al [13].

The Cropping System Model (CSM) is the main engine of the DSSAT ecosystem.
Most users run the model through the DSSAT Shell, but it can also be run through a com-
mand line interface on several platforms [18, 13]. The CSM is a single executable that is
capable to generically execute all the crop models available in DSSAT, each crop module
shares the same routines for the simulation of most processes [13].

DSSAT can be used by a final user via its Graphical User Interface (available only
for Windows), or via the direct execution of the CSM in the command-line in multiple opera-
tional system platforms [18].

Notably, since 2019, the DSSAT CSM has become an open-source project under
the BSD-3-Clause license and is publicly available on GitHub (https://github.com/DSSAT/
dssat-csm-os).

3.2 PYTHIA

Pythia is a tool developed by the University of Florida to simplify the usage and
configuration process of the DSSAT [5]. Due to the high complexity associated with using
and configuring DSSAT and the limitations of GSSAT, Pythia was designed to assist and sim-
plify the execution process, particularly in cases where the chosen dataset needs formatting
before use [5].

This Python-based tool can read specific datasets and divide them into a structure
of folders and files accepted by DSSAT [5]. Additionally, Pythia creates the relationship be-
tween soil data, climate data, and spatial data for each execution, enhancing the simulation
accuracy and efficiency [5, 13, 16].

Pythia is configured using a JSON file (Figure 3), which outlines relevant vari-
ables for the model’s execution, file locations involved, and operations to be executed by
DSSAT [5]. This method of configuration further simplifies the setup process for users.

https://github.com/DSSAT/dssat-csm-os
https://github.com/DSSAT/dssat-csm-os
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Figure 3. Example of a Pythia configuration file. This configuration defines fields like the path
to the weather, and GHR databases, as well as the working directories, path to the raster
file containing harvest statistics (further discussed in Section 4.8.2), the DSSAT executable
file, and the amount of CPU cores and threads utilized to parallelize the simulations.

One of the key strengths of Pythia is its flexibility in managing diverse input data
at different spatial resolutions, including crop masks, weather data, soil profiles, and crop
management information [13]. It also demonstrates cross-platform compatibility, being able
to run on various operating systems including Linux, Windows, and macOS [13].

Pythia is an open-source tool available via the AAR2 license on GitHub at https:
//github.com/DSSAT/pythia.

3.2.1 Geographic Support System for Agrotechnology Transfer

The Global Spatial Simulation and Analysis Toolkit (GSSAT), developed by the In-
ternational Fertilizer Development Center (IFDC), emerged as a pioneering tool in the field
of agricultural decision support systems. As a climate information analysis simulation tool,
GSSAT integrated GIS capabilities with the DSSAT’s Cropping System Model, facilitating
comprehensive, spatial agricultural simulations (seen in Figure 4) [5, 4]. The tool’s capa-
bility to process both historical climatic data and stochastic datasets allowed for versatile
and dynamic agricultural planning, catering to specific environmental and climatic nuances
of different regions [5].

This tool revolutionized how crop management strategies could be simulated and
analyzed. By incorporating a seasonal analysis tool, GSSAT facilitated the optimization of
crop management decisions based on cost/price structures and climatic variations. This fea-
ture proved invaluable in enhancing the precision and efficiency of agricultural planning [5].

2All Rights Reserved

https://github.com/DSSAT/pythia
https://github.com/DSSAT/pythia
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Figure 4. Legacy GSSAT’s user interface, featuring GIS capabilities for comprehensive spa-
tial simulations.

However, GSSAT faced several challenges that limited its long-term usability and
development. Developed decades ago, the tool suffered from a lack of maintenance, re-
sulting in compatibility issues with modern computing systems. This obsolescence not only
affected its performance but also made it difficult to support or develop further. One signifi-
cant limitation was the inflexibility in switching embedded datasets, which hindered the tool’s
adaptability to different regions of interest. Additionally, the scarcity of comprehensive docu-
mentation further compounded the challenges, making it difficult for new users to effectively
utilize the tool.

The development of GSSAT2, therefore, was not just a technological upgrade but a
necessary evolution to address these shortcomings. By incorporating modern computational
tools and methodologies, GSSAT2 aims to retain the core functionalities of GSSAT while
expanding its capabilities, user-friendliness, and accessibility to a wider range of users.



79

7. FINAL CONSIDERATIONS

7.1 SUMMARY OF KEY FINDINGS AND CONTRIBUTIONS

In this section, we aim to encapsulate the pivotal outcomes and significant con-
tributions of the GSSAT2 project. In summary, GSSAT2 represents a critical advancement
over its predecessor, the legacy GSSAT. Our investigation underlines GSSAT2’s capability
to address many of the previous version’s limitations. Specifically, it now supports modern
operating systems and boasts a more intuitive user interface.

Key contributions include the integration of cloud computing and web application
frameworks, expanding both the tool’s utility and user engagement. Additionally, GSSAT2
features enhanced, spatially-explicit crop growth simulations. These improvements serve to
furnish a more dynamic and accurate tool for stakeholders such as researchers, farmers,
and policymakers.

7.2 SIGNIFICANCE

In this section, the significance of GSSAT2 is discussed in the context of the broader
field of GIS and its potential impact on various domains.

The significance of GSSAT2 extends beyond mere technological upgrades; it has
implications for the broader field of GIS platforms and their applications in agriculture. By
overcoming the legacy challenges of its predecessor, GSSAT2 sets a new standard in GIS-
enabled decision-making for agricultural settings. Its ability to integrate complex crop simula-
tions with real-world geographical data opens up avenues for nuanced agricultural planning
at multiple scales—from local farms to regional and even national landscapes. Furthermore,
the modular architecture of GSSAT2 enables it to be a part of a larger ecosystem of tools,
making it adaptable and scalable to future agricultural challenges.

7.3 FUTURE DIRECTIONS

As we look ahead, the future for GSSAT2 is rife with potential. Based on the limita-
tions highlighted earlier, a slew of enhancements and new features are under consideration
(refer to Section 6.2 and Section 6.3). For example, the concept of developing complemen-
tary tools (such as the proposed Pythia substitute, or the chirpsfetch script) isn’t confined
solely to GSSAT2; we’re exploring how these could be flexible enough to seamlessly inte-
grate with other programs.
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The opening of GSSAT2’s source code is also being considered. This move could
speed up the tool’s development process and attract contributions from a wider range of
experts. By doing so, GSSAT2 would not only enhance its own capabilities but also could
become a cornerstone in a broader ecosystem of agricultural decision-making tools.

7.4 CLOSING REMARKS

In conclusion, the journey of developing GSSAT2 has been both challenging and
rewarding. Its contributions are manifold—from its more intuitive interface to its cloud com-
puting capabilities, to its enhanced, spatially-explicit crop growth simulations. These techno-
logical advancements elevate GSSAT2 from being merely an update to its predecessor into
a comprehensive tool for modern agricultural decision-making. While we are excited about
its potential, we recognize that it’s a step in a longer journey. With future enhancements
and community contributions, GSSAT2 is well-positioned to adapt and grow along with the
ever-evolving landscape of GIS and agricultural science.
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