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INCORPORANDO UM MODULO DINAMICO BASEADO EM GENES
EM UM MODELO DE SIMULAGAO DE CULTURAS

RESUMO

Os modelos de culturas usam parédmetros chamados como coeficientes genéticos
(CGs) para representar as caracteristicas da planta (fendtipo) em ambientes
especificos. CGs ndo se referem as informagdes genéticas “verdadeiras” com base
em um nivel de gene e s&o estimados a partir de dados observados no campo,
requerendo experimentos para medir a resposta fenotipica quando novos cultivares
sdo langados. Modelos baseados em genes oferecem o potencial para quantificar e
identificar o fenotipo a partir da composigdo genética da planta (gendtipo). Este
trabalho propde uma abordagem para a incorporagdo de um moédulo dindmico
baseado em genes para simular o tempo de florescimento do feijao (Phaseolus
vulgaris L.). Esta nova abordagem visa trabalhar em um modo hibrido para simular
usando locus de caracteristica quantitativa (LCQ) ou CGs para interagbes genéticas
(G), ambientais (E) e G x E e demonstrar aplicagbes potenciais usando analise de
sensibilidade e para simulagdo de rendimento.

Palavras-chave: DSSAT, CROPGRO-Drybean, Beans, QTLs.



INCORPORATING A DYNAMIC GENE-BASED PROCESS MODULE
INTO A CROP SIMULATION MODEL

ABSTRACT

Crop simulation models uses parameters referred as genotype-specific parameters
(GSPs) to represent plant characteristics (phenotype) under specific environments.
GSPs do not refer to “true” genetic information based on a gene level and are
estimated from data observed in the field and require experiments to measure
phenotypic response when new cultivars are released. Gene-based models offer the
potential to quantify and identify the phenotype from the plant's genetic composition
(genotype). This work proposes an approach for incorporates a dynamic gene-based
module for simulating time-to-flowering for common bean (Phaseolus vulgaris L.).
This new approach aims to work in a hybrid mode for simulating using quantitative
trait loci (QTLs) or GSPs for genetic (G), environment (E), and G x E interactions,
and demonstrate potential applications using sensitivity analysis and for simulating
yield.

Keywords: DSSAT, CROPGRO-Drybean, Beans, QTLs.
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1. INTRODUCTION

The population growth, expected to reach 9 billion by 2050, will
significantly increase consumption and demand for food. To meet the needs of food
security and sustainability, new investments and strategies are needed to continue
increasing the productivity of agricultural systems. Achieving high yields in low-
income countries is of great importance for global demand to be met with minimal
environmental impacts [1]-[5]. The use of technologies that combine scenarios with
focus on interactions between genetics (G), environment (E) and management (M)
practices, could provide more realistic income projections and viable solutions [5].

Since the early 1970s, considerable efforts have been made and continue
to be made in the development of crop system models (CSM), to predict the final
productivity of agricultural systems and work as support system for decision makers,
policy for food security [6]. Crop system models are tools based on processes that
dynamically simulate a cropping system affected by environmental conditions,
management practices and differences between cultivars, describing the rate of crop
development.

The cultivars in the CSMs are represented by parameters called genetic-
specific parameters (GSPs) [7]. GSPs are not related to the genetic information and
are estimated with data observed in the field. However, GSPs may not accurately
represent variation between cultivars and environments, although they can provide
good predictions when estimated independently for a given cultivar and specific
environment [8]. It was found that the present generation of soil-plant-atmosphere
crop models does not support responses to major climatic and cultivar variation in
extreme environmental conditions [9]. In parallel, Boote et al. [10] and Hwang et al.
[8] conclude that existing crop models can dynamically replace modules with gene-
based processes, as they are developed and made available.

Technological advances present a fast and inexpensive way to identify the
genetic composition of plants [11], [12]. Analytical tools are available to locate which
genes are associated with variation in different cultivar characteristics, increasing
interest in identifying the phenotype of plants, through genetic information [13], [14].
Statistical methods are used by scientists to detect a gene or gene combinations

associated with a phenotypic trait [15]-[17] and these tools also assist plant breeding
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programs for prediction and selection of the cultivar lines to improve crop yield and
gene-based models can help simulating interactions between genetics and
environment (G x E) that have a major impact on final yield [17].

The time-to-flower trait is one of the major targets in plant breeding
programs aiming maximizing the crop vyield. The transition from vegetative to
reproductive stage which is determined by the first flowering is a key factor for
defining the successful reproduction in the ecosystem and depends on the genotype
and the interactions with the environment. The major environmental factor that
affects the time-to-flower are the photoperiod and temperature [18].

The Common bean (Phaseolus vulgaris L.) was the crop used in this work
which is a crop of major importance worldwide and source of protein and essential
nutrients and most consumed in parts of Africa and the Americas [19]. Time-to-
flowering phenotypes of a RIL population are collect from an Andean bean cultivar,
Calima, which is photoperiod sensitive and a Mesoamerican cultivar, Jamapa which
is less sensitive to photoperiod [18].

The goal of this study is to address the questions of how this type of
integration can be done in an existing dynamic crop model for time-to-flower and
what are the complications and limitations that can occur. In Chapter 2 are shown the
details of the development used for integration an existing dynamic crop model and
the gene-based model and demonstrate potential applications of the hybrid dynamic
model for the G x E interactions using sensitivity analysis and for simulating yield. On
Chapter 3 are presented the final remarks and future work.
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2. INCORPORATING A DYNAMIC GENE-BASED PROCESS
MODULE INTO A CROP SIMULATION MODEL

Abstract

Dynamic crop simulation models are tools that predict plant phenotype grown in
specific environments for genotypes using genotype-specific parameters (GSPs),
often referred to as “genetic coefficients.” These GSPs are estimated using
phenotypic observations and may not represent “true” genetic information. Instead,
estimating GSPs requires experiments to measure phenotypic responses when new
cultivars are released. The goal of this study was to evaluate a new approach that
incorporates a dynamic gene-based module for simulating time-to-flowering for
common bean (Phaseolus vulgaris L.) into an existing dynamic crop model. A multi-
environment study conducted in 2011 and 2012 included 187 recombinant inbred
lines (RILs) from a bi-parental bean family to measure the effects of quantitative trait
loci (QTL), environment (E), and QTLXE interactions across five sites. The dynamic
mixed linear model from Vallejos et al. (2020) was modified in this study to create a
dynamic module that was then integrated into the CSM-CROPGRO-Drybean model.
This new hybrid crop model, with the gene-based flowering module replacing the
original flowering component, requires allelic makeup of each genotype being
simulated and daily E data. The hybrid model was compared to the original CSM
model using the same E data and previously estimated GSPs to simulate time-to-
flower. The integrated gene-based module simulated days of first flower agreed
closely with observed values (root mean square error of 2.73 days and model
efficiency of 0.90) across the five locations and 187 genotypes. The hybrid model
with its gene-based module also described most of the G, E and GxE effects on time-
to-flower and was able to predict final yield and other outputs simulated by the
original CSM. These results provide the first evidence that dynamic crop simulation
models can be transformed into gene-based models by replacing an existing process

module with a gene-based module for simulating the same process.

2.1. INTRODUCTION
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Scientific advances in understanding plant genes combined with advances
in technologies for rapidly and inexpensively identifying genetic makeup of plants
[11], [12] have fueled considerable interest in using genetic information to predict
plant phenotypes. Analytical tools are now available to identify the genes that are
associated with the variation in different plant traits. These bioinformatics tools also
can identify important gene-by-environment (G x E) interactions that contribute to
observed variation in specific traits [20]. Rapid progress in genome-wide association
studies (GWAS) has enabled researchers to identify genes associated with variation
in human diseases [13].

Genome-wide prediction models that use GWAS also have become
powerful tools for improving crops such as tropical rice (e.g., Spindel et al. [21]). The
GWAS approach has been implemented in recent work in other crops [14], [22], [23].
Scientists use statistical methods, such as single locus analysis based on ANOVA,
linear regression, and mixed linear regression models, to detect a gene or gene
combinations associated with variation in a phenotypic trait [15]-[17]. These tools
also assist geneticists and plant breeders for prediction and selection of lines to
improve crop yield.

Concepts have been under development since the early 1970s for
predicting crop yield variation using dynamic models as affected by environmental
conditions and management scenarios, and to some variation among cultivars [6],
[24]. Differences among cultivars are represented by empirical genotype-specific
parameters (GSPs). However, these models do not use information on variation in
genes among the cultivars. Instead, the GSPs for each genotype must be estimated
using data from laboratory or field studies [25]-[27].

Recognizing the potential for introducing genetic information into crop
models, White and Hoogenboom [15], [28] showed that some of the BEANGRO
model’s GSPs [29], [30] could be estimated as linear functions of genetic information.
This approach was also used by Messina et al. [7] for the CROPGRO-Soybean
model and by other researchers for different crops [31]-[35]. Furthermore, this
approach of relating existing crop model GSPs to molecular markers was shown to
provide better yield predictions than that of a statistical model for maize [36]. More
recently, Wallach et al. [37] showed that genetic effects on rate of progress to first
flower in common bean can be estimated using field data from a multi-environmental

trial containing a large number of genotypes.
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Although GSPs can provide high levels of prediction in crop models when
they are independently estimated for each genotype, these parameters may not
accurately represent the genetic architecture of the associated crop phenotype or
process [8]. Acharya et al. [38] found that commonly used approaches for estimating
GSPs for the Cropping System Model (CSM)-CROPGRO-Drybean model [39]-[41]
resulted in considerable equifinality among estimated GSPs, which means that
multiple sets of possible GSP values produced very similar responses. This was
demonstrated by Acharya et al. [38] using a synthetic population based on known
GSPs that were used to generate synthetic field data. Then, blind estimates of GSPs
using those synthetic data differed from original values. Even though new GSPs
reliably predicted crop growth and yield, the procedure was unable to recover the
original GSP values.

The previously discussed studies contain relationships and assumptions
made by the original crop model developers, including the functional forms used to
describe the E and G effects on predicted dynamic rates. As a result, this use of
existing relationships makes it difficult to identify G and G x E effects from field data,
which can be seen in the expanded original model form published by Wallach et al.
[37]. Note that this expanded functional form inherently includes many G x E
interaction terms that may or may not exist. Incorporating genetic information into an
original model’s functional form entangles G, E, and G x E effects and, thus, does not
enable one to study interactive G x E effects on the rate of progress toward
flowering. Furthermore, we have learned that there is variation among genotypes that
were not captured in the original model formulations and associated assumptions
[10], [38], [42]. One example is that some combinations of genes may result in
different responses to temperature than others, whereas the assumptions imbedded
in the existing models mostly assume that temperature responses of all genotypes
are the same.

Another issue is that the gene-based approach that thus far has evolved in
the crop modeling community has not been widely embraced by the genetics
community, nor have the analytical approaches used by geneticists to predict genetic
effects on crop traits been adopted by the crop modeling community. There have
been limited interactions between these science communities that might lead to more
rapid advances in gene-based modeling. Hwang et al. [8] concluded that

comprehensive gene-based crop models may be developed using existing crop
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models by replacing existing component dynamic modules with gene-based modules
as they are developed.

Recent progress has helped identify a possible pathway to help converge
these communities. A multi-environment trial (MET) that was conducted in 2011 and
2012 included 187 common bean (Phaseolus vulgaris L.) recombinant inbred lines
(RIL) from a bi-parental family. As part of this study, significant QTLs controlling the
time to flowering in the RIL population were identified [18], [43], which provided an
opportunity to model QTL and environmental effects on the time to flowering. This
study included geneticists, biostatisticians, and crop modelers asking questions
about which genes affected different growth and development processes across
environments and what G x E interactions were important. One of the outcomes of
this study was a QTL-based mixed model to determine the G and G x E interactions
in order to build a predictive model for the time-to-flowering trait [18].

Vallejos et al. [44] described how one can use a statistical model to
develop a dynamic mixed model that can predict the time to first flower phenotype
based on a daily development rate. They developed a model that predicts the daily
development rate and discussed its potential integration into an existing dynamic
crop model that responds to varying environmental conditions. However, integration
of this model was not attempted by Vallejos et al. [44]. There could be unknown or
implicit assumptions in the original crop model that might lead to erratic responses
that would have to be identified and addressed when a gene-based module is
integrated into an existing dynamic crop model that does not rely on genetic data
inputs.

The goal of this study was, therefore, to address the questions of how this
type of integration can be done in a comprehensive dynamic crop model and what
complications and limitations are likely to occur. The first objective was to develop
and integrate a dynamic statistical gene-based module into the CSM-CROPGRO-
Drybean model to predict the time of first flower appearance using data obtained
from the MET bean studies. The second objective was to demonstrate potential
applications of the hybrid dynamic model as a breeding tool for studying the G x E

interactions using sensitivity analysis and for simulating yield.

2.2. MATERIAL & METHODS
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2.21. Genotype Population

The bean MET was conducted to collect the time-to-flowering phenotypes
of a RIL population from a cross between the Andean bean cultivar, Calima, and a
Mesoamerican cultivar, Jamapa [18]. The Calima parent is a large-seeded, mottled
bean Colombian cultivar with a determinate growth habit, while Jamapa is a small,
black-seeded Mexican cultivar with an indeterminate growth habit. The RIL
population was developed through single seed descent for 10 generations, followed
by bulk propagation for an additional three generations (F11:14) giving rise to 187
RILs. Further details for this RIL population can be found in Bhakta et al. [18], while
the QTL-based linkage is described by Bhakta et al. [43].

2.2.2. Experimental Sites

We used the data from the MET study that included five locations, 187
RILs, and two parents reported by Bhakta et al. [18]. The five sites had been selected
to provide contrasting environmental growing conditions, especially those related to
temperature and photoperiod. Three of the five sites are located in the USA: Prosper,
North Dakota (ND); Citra, Florida (FL); and Isabela, Puerto Rico (PR), while the other
two sites are located in Colombia: Palmira, (PA), and Popayan, (PO). Figure 1 and
Table 1 summarize the seasonal temperature, day length, and solar radiation for the
five sites in the MET study, which are the main environmental variables that affect
the time to flowering in common bean. Prosper (ND) has longer days than the other
environments, while Palmira and Popayan are close to the equator and have short
days. Within Colombia, Popayan, the coolest site, is located at an elevation of 1,800
m, while Palmira, the warmer site, is located at a 1,000 m elevation.

The experiment was conducted in 2011 and 2012, depending on the site.
Each RIL and the two parents were grown in three replicated plots per site, with
between 35 and 50 plants per plot. Six individual plants per plot were tagged at the
V1 (first trifoliate opening) stage to record the vegetative and reproductive growth
stages, resulting in 18 observations per genotype per site for each observation day.
The plants were monitored daily to determine the date for each individual plant when

first flowering occurred.
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Figure 1. Boxplots of environmental variables observed for all five sites: Prosper,
North Dakota (ND); Citra, Florida (FL); Isabella, Puerto Rico (PR); Palmira, Colombia
(PA); Popayan, Colombia (PO). The boxplots show the distribution of daily values of

maximum temperature (top left), daily minimum temperature (top right), daily solar
radiation (bottom left) and day length (bottom right). The day length for all locations is

based on the calculations of the CSM-CROPGRO-Drybean model.
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Table 1. Summary of the meteorological and geographical data for each site in the
multi-environment trial as reported by Bhakta et al. [18], except for the
computed day length that is based on the Cropping System Model (CSM).

ND FL PR PA PO
Location Prosper, North Citra, Florida, Isabella, Palmira, Popayan,
Dakota, USA USA Puerto Rico, Colombia Colombia
USA
Latitude / 47° 00N/ 29° 39N/ 18°28 N/ 03°29'N/ 02° 25 N/
Longitude 96° 47' W 82° 06’ W 61°02 W 76° 81 W 76° 62° W
Elevation (m) 280 31 128 1000 1800
Earliest first flowering date Jun-30-2012 Apr-26-2012 Mar-6-2012 Dec-9-2011 Apr-28-2012
Latest first flowering date Jul-26-2012 May-16-2011 Mar-22-2012 Dec-24-2011  May-16-2012
Seasonal Maximum 27 32 29 28 25
Temperature (°C)?
Seasonal Minimum 13 18 19 19 13
Temperature (°C)?
Day-Length (hh:mm)® 15:29 12:41 11:33 11:49 12:03
Solar Radiation (MJ m2d")  21.0 20.6 21.5 13.8 15.0
Cc

aGrowing season average values for maximum and minimum temperature.

Average day length data from sowing to first flower as computed by the CSM of the Decision Support
System for Agrotechnology Transfer (DSSAT).

°Growing season average daily total solar radiation.

2.23. Dynamic mixed linear model

Vallejos et al. [44] described procedures used to develop a dynamic mixed
linear model to determine the rate of progress towards first flowering. This model was
based on earlier work that was conducted by Bhakta et al. [18] who fitted a statistical
mixed linear model to predict time-to-flowering of the RILs based on QTL information
and the mean environmental variables for each of the five sites. The Bhakta et al.
[18] model used a linear function for the effects of maximum and minimum
temperature, day length, and solar radiation, each averaged over the duration
between sowing and first flowering, twelve QTLs, five QTL x E factors, and one QTL
x QTL factor. This non-dynamic model was able to describe 89% of the observed
variability among the five locations and 187 RILs, with a root mean square error
(RMSE) of 2.52 days.

Vallejos et al. [44] used a similar approach to that used by Bhakta et al.
[18] to develop their dynamic model [see Supporting Information Figure S1]. First, the
time to first flower data for all RILs and environment combinations were transformed
into a development rate toward first flower appearance, calculated as rate = 1/(days
to first flower). This approach requires the implementation of a function that predicts
the daily development rate towards the time to first flower.
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We designed a new module (DMLM; see Table 2 for abbreviations) by
converting the Vallejos et al. [44] model into a form that could be integrated with the
original CSM-CROPGRO-Drybean model. The dynamic module computes the
fraction of daily progress towards flowering based on the developmental rate that is
controlled by genotype and daily environmental conditions. The time-to-flowering is
determined when the cumulative addition of the daily progress time steps reaches
unity. Equation (1) shows the DMLM module that contains four environmental
variables, one QTL x QTL interaction and seven QTL x E interactions.

FR4(t) = p (1)
+a, - (DayLy(t) — DayL,, )
+ay - (DayLg(t) — DayL,, ) QTL3,4
+az - (DayLg(t) — DayL,, ) QTL,,4
+ay - (DayLs(t) — DayLy, ) - QTLiz g
+ as - (Srady(t) — Srad,, )
+ ag - (Sradg(t) —Srad,, ) QTLiy,
+ a; - (Tmax,(t) — Tmax,,)
+ ag - (Tmaxs(t) — Tmaxy,) - QTLs 4
+ aq - (Tming(t) — Tmin,, )
+ a0 * (Tming(t) — Tmin,, ) - QTL,,
+ a;; - (Tming(t) — Tminy, ) QTL; 4
+ a1 (QTLyg " QTL12g)
+Xq21Bq-(QTLg )
+ &g

Where FR;(t) is the rate of progress to flowering (1/d) for the g genotype
for the s™ site at time t (in days). u represents the overall mean value of the daily
development rates across all RILs and sites in the MET dataset. In the linear function
(Equation (1)), RILs were treated as random effects and all remaining factors were
considered as fixed effects. The variance-covariance structure that was used was
unstructured, which is the default in the Ime4 R-package. Note that Equation (1) uses
E variables that are centered on the mean values from the MET study for each RIL,
based on the Vallejos et al. [44] model. The first terms express the effects of the four
environmental variables and the QTL-by-E effects, in which the variables as through
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a1 are estimated coefficients that quantify those effects, DayLs(t) is day length on
each day t of the experiment at site s. Similarly, Srads(t) is daily solar radiation
(MJ/m2), Tmaxs(t) is daily maximum temperature (°C), and Tmins(t) is daily minimum
temperature (°C) for each day t at site s. Mean values for each environmental
variable (Equation (1)) were used as constants to center the module calculations
within the observed variables. These values were calculated from sowing to first
flower for each RIL and all sites in the MET dataset, represented by DaylLm, Sradm,
Tmaxm, and Tminm. Also, QTLz2g, QTL3g, QTLsg, QTL7g, and QTL124 are QTLs that
interact with E to affect time to first flower [18]. The second part of this equation
shows one QTL-by-QTL interaction (QTL14 interacting with QTL12g); asz is the
coefficient for this interaction. The third part of this equation includes the sum of all
QTL effects, where B, represents the coefficient for the g QTL allele effect for RILg
(QTLgg)- Each QTL has a marker value numerically assigned according to its allelic
identity; Jamapa alleles were assigned as -1 and Calima alleles as +1 values [see
Supporting Information Table S1].

The daily rates (FRsg(t)) in Equation (1) are then accumulated or
integrated over time to predict day of first flower appearance using Equation (2) and
a daily time step (dt = 1).

SUMFR; 4(t) = SUMFR, 4(t — 1) + FR 4(t) - dt (2)

where SUMFRs4(t) integrates the flowering rate at time ¢ (in days) starting on the day
of planting. SUMFRs(t) is set to 0.0 at the start of the simulation, and when it

reaches 1.0, first flowering is simulated to occur on that day t for the g RIL at site s.

Table 2. Description of model abbreviations.

Module Dynamic Module Description

DMLM Dynamic Mixed Linear Model developed by Vallejos et al. [44].

DMLM-DL Dynamic Mixed Linear Module by Vallejos et al. [44] using day length calculated
with the CSM model

DPLM Dynamic Piecewise Linear Module (integrated into CSM-CROPGRO-Drybean
model)

Full Crop Model Full Crop Model Description

DPLM-CSM DPLM Gene Based Module integrated into the CSM-CROPGRO-Drybean model
using QTL inputs

CSMG CSM-CROPGRO-Drybean model using genetic specific coefficients (GSPs)

224, Dynamic piecewise linear module
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The CSM-CROPGRO-Drybean model (CSMG, Table 2), which is part of
the Decision Support System for Agrotechnology Transfer (DSSAT; [41]), requires
daily weather data, soil surface and profile characteristics, crop management
scenarios, and cultivar information (GSPs) as input [40], [41]. The CSMG crop model
uses daily weather variables for maximum and minimum temperature and solar
radiation, and these variables have the same units as those used in the DMLM
module. However, the day length (h) computed and used in the CSMG model is
slightly different from the one used to develop the Bhakta and Vallejos models. The
main difference is that the CSMG model accounts for the twilight period at sunrise
and sunset, which may affect the photoperiod response of crops. Thus, in this study
we used daily day length values computed by the CSMG model as input for the
statistical procedures to estimate the numerical coefficients in Equation (1). This was
done to make the daily weather and photoperiod variables identical to those used in
the CSMG model [30], [39] and to allow incorporation of the new dynamic gene-
based module.

A second dynamic module (DMLM-DL) predicts the flowering rate
(Equation (1)) on a daily basis using the daylengths from the CSMG and using a
linear response to temperature. However, it is well-known that under high
temperature conditions the rate of progression towards flowering does not increase
linearly with temperature [45]. Instead, the response is only approximately linear over
a specific range of temperatures, and response plateaus as an optimum temperature
is reached. In fact, the effect of temperature on development rate can be more
accurately represented by a beta function [46]. Because the temperature varies
considerably within a single season, with location, and over time, plants are
frequently exposed to temperatures outside their linear response range. To help
account for the non-linearity response of common bean under high temperatures, a
third module was created that uses a dynamic piecewise linear function (referred to
as the DPLM module) to ensure that the daily simulated development rate is
bounded to be within the range of temperatures that were observed in the MET study
and used to estimate the coefficients in Equation (1) [see Supporting Information
Figure S2].

FRMAX, is defined as the rate at which the progress toward flowering
proceeds when the environmental conditions, i.e., the daily maximum and minimum

temperature, day length, and solar radiation, are at “optimum” values that result in a
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maximum development rate for the g" genotype. The FRMAX, values were
estimated by selecting the maximum rate (1/DURs,g) for each RIL occurring across s
environments, using the observed duration between planting and first flower across
all s sites using Equation (3):

FRMAX, = max(1/DUR;,) across all s sites (3)

This resulted in 189 data points (one for each RIL plus the two parental
lines). We determined whether the values for FRMAXy were affected by the same
QTLs that significantly affected the time to first flower by estimating a linear
relationship shown in Equation (4).

12

FRMAX, =y, + z pq (QTLyg) 4)
q=1
where the variable yq is the fixed intercept estimated for the g genotype and pq is
the coefficient that quantifies the allelic effect of the g QTL on the maximum rate of
progress. A linear regression analysis was used to estimate coefficients of Equation
(4).

The final daily rate of first flowering was determined using the DPLM
module that was integrated into the CSMG model in which a maximum rate of
development is limited depending on the genotype. If the daily flowering rate at time t
computed by FRsg(f) exceeds FRMAX, for any recombinant inbred line in the DPLM
module, FRDsg(t) limits the maximum rate of flowering to that set by FRMAXg,
Equation (5):

FRD; ,(t) = min(FRg 4(t), FRMAX,) (5)

Finally, FRDsg(t) is integrated daily to predict the day when first flower
occurs, Equation (6), where SUMFRD:s ¢(t) integrates the flowering rate at time ¢ (in
days) in the DPLM module.

SUMFRD; ;(t) = SUMFRD; ;(t — 1) + FRD; 4(¢t) - dt (6)

At the start of the simulation, SUMFRDs4(t) is set to 0.0 and the day when

it reaches or exceeds 1.0, flowering is predicted to occur for the g genotype.

2.2.5. Incorporation of a gene-based module into CSM
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The CSMG model [29], [30] was developed using a modular structure
(Jones et al. 2001), where overall development and growth are represented by
specific modules, including those for vegetative and reproductive development,
photosynthesis, respiration, partitioning, vegetative and reproductive growth, and
other soil and crop processes [41]. For this study the focus was on the phenology
module of CROPGRO where the developmental and phenological phase transitions
are implemented.

Boote et al. [39] described the physiological development rate in
CROPGRO as a function of temperature, photoperiod, and water deficit. If these
conditions are optimal, one physiological day is accumulated per calendar day. The
phenology module in CROPGRO separates the vegetative and reproductive routines
that calculate the stages and individual phase durations.

To incorporate the first flower development stage using SUMFRDsg(t) in
the CSMG model, we first developed a new gene-based module (GBM) to create a
link between the DPLM module and the crop model (Figure 4). This module connects
daily input data, the DPLM module, and the CSMG phenology module. The inputs for
this DPLM module consist of weather data from the crop model and the 12 QTL
allelic make up for each RIL (or genotype). The input QTL data for our study were
those for the 187 RILs plus the two parent cultivars, which are processed in a new
QTL data subroutine inside the GBM module. A new input file was created for the
CSMG model, named BNGROO047.GEN that contains QTL data for each of the RILs
and their two parent cultivars [see Supporting Information Table S1].

The daily weather and QTL data for a particular site and RIL are inputs for
the DPLM module, enabling it to simulate the daily flowering rate as affected by G
and E conditions. The integrated development progress to first flower, SUMFRD:s (1)
and the day when first flowering occurs are passed back to the CSMG phenology
routine. The outputs from the GBM module are inputs to the reproductive stage
component, where the variables associated with first flowering are calculated. The
day when first flowering occurs is set and afterward, progress for subsequent
development phases are computed using the original CSMG model.

2.2.6. Sensitivity analysis of simulated variation for G x E
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A simulation analysis was performed using the DPLM module to explore
all possible combinations of the 12 QTL variation among RILs using the daily weather
data across all five sites of the MET study, similar to previous ideotype studies [45].
This resulted in a total of 4,096 (212) RILs. The coefficients estimated using 187
RILs plus the two parents were used to simulate the number of days to flowering for
the 4,096 RILs. The input fle BNGRO047.GEN file containing QTL information was
revised by adding inputs for each of the 4,096 RILs. Crop management including the
planting dates and the daily weather data were assumed to be same as for the
original five environments of the MET study. The management input file assumes
that only the variation in genetics and environments affect the simulated responses,
representing potential production for each line. The DPLM module was then used to
conduct the 20,480 unique simulations across sites and synthetic RILs.

The time to first flower responses of the DPLM module were compared
with those of the DMLM-DL module to determine how the addition of a maximum
rate, FRMAX, affects the simulated results under different high temperature
scenarios in a sensitivity analysis using the 187 RILs and two parents across all five
sites of the MET study. The original daily temperature data were used as the base
line inputs. Then, both the minimum and maximum temperatures for each day and
each site were incremented at a 1 °C increment to create five different temperature
scenarios (base, base+1, base+2, base+3, and base+4 °C), assuming that crop
management, daily solar radiation, and day length were the same as for the original
MET study. The simulated number of days to flowering were analyzed and compared
for the DPLM and DMLM-DL modules using statistics and a visualization of the
distributions of number of days to first. Although we did not have sufficiently high
temperatures in the MET study to account for the decrease in development rate as
the temperature increases above an optimal threshold, the simple addition of the
maximum rate in the piecewise linear module is expected to provide reliable

simulations for small increases in temperature.

2.2.17. Yield prediction

An ultimate goal of dynamic crop simulation models is to be able to predict
yield. Therefore, we compared the performance of the original CSMG model using
GSPs with the DPLM module integrated into CSM-CROPGRO-Drybean model
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(DPLM-CSM; Table 2). All 18 GSPs were available for 144 genotypes, including 142
RILs and the parent material, except for PA, for which GSPs for only 143 genotypes
were available. The procedures for estimating the GSPs were described by Acharya
et al. [38]. Daily simulations, starting at planting and continuing until harvest maturity
was predicted, were conducted for all five sites for either 2011 or 2012, depending on
the MET. Crop management and local weather and soil data based on the original
MET study were used as input for the CSMG model (Figure 1). For the DPLM-CSM
hybrid model, the flowering dates were predicted based on the DPLM module using
the QTL information as input, rather than the GSPs, while for the other growth and

development processes, the GSPs for the individual genotypes were used as input.

2.2.8. Model evaluation

To estimate parameters for the QTL-based modules, we used the Imer
function of the Ime4 package [47] of the R programming language (version 3.6.1). To
compare the performance of the modules with observed data, we used the estimated
parameters for the final QTL-based DPLM module for each site. As a measure of fit
of Equation (1) to the data, we used the root mean squared error (RMSE), defined as

n

RMSE = \/(l) =1 (i = 90)? (7)

where y; and 9; are the /" observed and simulated number of days to
flowering, respectively, and n is the number of measurements summed for all values
for all RILS and for each site and all sites combined. The adjusted R2 was calculated
because it indicates module performance adjusted by the number of the terms in the

module, defined as

(1-R?)(n-1)
Rjdjusted =1- [m (8)

where R2 represents the coefficient of determination, n is the number of
measurements and k is the number of independent variables of the model. A Nash
and Sutcliffe [48] skill score was also used as a measure of model error, referred to
as model efficiency (ME) [49], and defined as

ME = 1- Zn:(yl' - 9)? /i()’i - ¥)? €))
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If ME = 1.0, the model fits perfectly, and the observed values are equal to
the simulated values (y; = y; ) for each i and ME = 1. If ME is less than 0.0, the mean
of the observed data is a better predictor of the data than the model. If the variance
for the observed minus predicted values is equal to the variance of observations from
its mean value, then ME = 0.0, which means that the model is not good because it is
no better than using the average of observed values to predict responses. For
evaluation of the predictive ability of the modules, we also compared the
contributions to prediction error caused by model bias and standard deviation. We
used the decomposition of the mean square error (MSE) into bias, standard deviation
differences, and residual errors that was developed by Kobayashi and Salam [50],
Equation (10).

MSE = (Bias)? + SDSD + LCS (10)

With
2
Bias® = [(%) =1 —571')]
SDSD = (SD, — SD,,)?
LCS = 2SDSD,,(1 —1)
The first term of Equation (10) is the bias squared, the second term SDSD
is related to the difference between the simulation standard deviation (SDs) and the

standard deviation of the measurements (SDn). The third term, LCS, indicates the

remaining MSE error that is not accounted for by bias or standard deviation.

2.3. RESULTS AND DISCUSSION
2.31. Dynamic mixed linear module coefficients

The FRsg(t) function is shown below with estimated parameter values for
the DMLM-DL module. The values of coefficients in Equation (11) are based on the
influence of day length, solar radiation, temperature, and 12 QTL alleles for each RIL,
showing G, E, G x E, and G x G interaction effects.

FRy,(t) = 2.35148 x 1072 (11)
— 1.56357 x 1072 - (DayL.(t) — DayL,,)
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—7.66441x 10~ - ((DayLy(t) — DayLy) - QTLs )
— 1.62459 x 10~ - ((DayLy(t) — DayLy) - QTLy, )

— 145956 x 10™* - ((DayLs(t) — DaylLy,) - QTle.g)
—8.50211x 107> - (Srads(t) — Srad,,)
—3.06273x 1075 - ((Srads(t) — Srad,,) - QTle,g)
+5.72311 x 10™* - (Tmax,(t) — Tmax,,)
+8.54093 x 1075 - ((Tmaxs(t) — Tmax,,) - QTLs.g)
+ 5.29789 x 10~* - (Tming(t) — Tmin,,)

~ 240896 x 1075 - ((Tming(t) — Tminy) - QTLyg )
— 859042 x 1075 - ((Tming(t) — Tminy,) - QTLs g )
+3.01579 x 10+ (QTLy g - QTLy )

+9.41278 x 10~% - (QTLy ;)

+1.24887 x 1073 - (QTL, )

—~ 6.08364 x 10~% - (QTL; )

+2.36803 x 1074 - (QTLy )

+5.67194x 1076 - (QTLs )

+5.27617 x 10~% - (QTLg )

— 411459 x 10~* - (QTL, ,)

~2.11983 x 10~% - (QTLg )

— 442610 x 10~* - (QTLg )

—2.50138 x 107* - (QTLy )

+3.43389 x 104+ (QTLyy,)

~1.53677 x 107* - (QTLy,,)

Where the first term (2.35148 x 107) is the overall average rate of
progress, indicating that the average time between sowing and appearance of first
flowering is 42.5 days (= 1/(2.35148 x 102)). The first coefficient (a7 = —1.56357 x 10
3) is the sensitivity to day length, indicating that a one-hour increase in day length

would result in a rate of development that is 1.56357 x 10 below the average rate of
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2.35148 x 10?). This one-hour increase in day length simulates that the time to first
flower would occur 45.6 days after planting, an increase of 3.1 days compared to the
average days to first flower that was observed across the 5 sites and 187 RILs plus
the two parents. This rate of development also varies as a function of QTL alleles,
which can increase or decrease the rate resulting in a decrease or increase in the
number of days to first flower, respectively. Note that some the QTL coefficients in
Equation (11) have a negative sign while others have a positive sign. This is because
each parental genotype has both types of alleles; the allele operator, i.e., Calima =
+1 and Jamapa = -1, will alter the sign of the coefficient accordingly [see Supporting
Information Table S1]. The estimated parameters terms with the 2.5% and 97.5%
confidence intervals, p-value, and the variance components are shown in the
Supporting Information Table S2. The fixed effects variance was 1.80182 x 10, the
random effects variance was 6.34775 x 107, and the residual variance was 1.3056 x
106,

Next, we compared the agreement between simulated and observed
results for all sites, RILs, and parents using the DMLM and DMLM-DL modules
(Figure 2(A), 2(B) and Table 3). Comparisons of RMSE between simulated and
observed values showed that the errors were only slightly different between the two
modules (Table 3, DMLM and DMLM-DL modules). When all sites and RILS were
included in the comparisons, the RMSE values were 2.73 days and 2.72 days for the
DMLM and DMLM-DL, respectively. Similarly, when comparing agreements for each
site, the RMSE values using the two module versions were within 0.02 days for ND
and 0.04 days for FL. Notably, however, Table 3 shows relatively large differences in
RMSE depending on site, with ND having the largest RMSE or 4.58 days in
comparison with the lowest RMSE of 1.61 days for PA. We attributed these
differences to the fact that the MET did not include a site with long days and low
temperatures to contrast the long days and high temperatures of ND, which did not
adequately capture the temperature-day length interactions previously documented
by Wallace and Enriquez [51] and Wallace et al. [52].

The comparison of ME between the two module versions (DMLM and
DMLM-DL) showed that both have the same high model efficiency value of 0.90.
Although ME values for the ND site were lower (0.30 for both modules), these
positive numbers indicate that the modules are more effective than using the mean
value of the observations. Table 3 also shows that the bias in simulating time to
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flowering was low across all sites (less than 0.5 days), and MSE values were low
except for ND. The remaining error after accounting for bias and standard deviation
differences were much larger for both module versions at ND than for any of the
other sites. Overall, the module implementation using the CSMG-computed day
lengths (DMLM-DL) showed that the agreement indicators were only slightly different
from the DMLM module using the day lengths from Bhakta et al. [18].

Table 3. Measures of agreement between simulated and observed number of days
from planting to first flower for all models for each individual site and for all sites

combined.
Site’ Measures of Agreement?
Genotypes(#) Observed Simulated Bias RMSE ME MSE (Bias)? SDSD LCS
Mean Mean
DMLM?
ND 149 57.74 58.36 -0.62 458 030 21.08 0.38  0.04746 20.65
FL 170 42.46 4296 -0.50 251 0.72 6.32 0.25 1.02153 5.05
PR 163 36.42 36.88 -0.45 197 0.70 3.89 0.21 0.62889 3.05
PA 173 36.65 37.15 -0.50 162 0.72 2.63 0.25  0.02306 2.36
PO 173 45.96 46.15 -0.19 226 0.81 5.16 0.04  0.09782 5.02
All 828 43.54 4399 -045 273 090 7.45 0.20 0.04168 7.20
Sites
DMLM-DL
ND 149 57.74 58.32 -0.57 456 0.30 20.90 0.33  0.09217 20.48
FL 170 42.46 43.03 -0.56 255 0.71 6.53 0.32 1.11594 5.10
PR 163 36.42 36.88 -0.45 197 0.70 3.89 0.21 0.58810 3.09
PA 173 36.65 37.18 -0.53 161 0.73 2.61 0.28  0.01977 2.31
PO 173 45.96 46.08 -0.12 223 081 5.02 0.01 0.10511 4.90
All 828 43.54 4398 -044 272 090 7.42 0.20 0.05778 717
Sites
DPLM
ND 149 57.74 57.37 0.38 455 030 20.82 0.14  0.11116 20.57
FL 170 42.46 42.14 0.32 249 0.72 6.22 0.10  0.96639 5.15
PR 163 36.42 36.01 0.41 193 0.71 3.75 0.17  0.44665 3.13
PA 173 36.65 36.36 0.29 1.56 0.74 244 0.08  0.00026 2.36
PO 173 45.96 45.07 0.89 241 0.78 5.84 0.79  0.10968 4.94
All 828 43.54 43.08 0.46 273 0.90 7.46 0.21 0.06855 717
Sites
CSMG
ND 144 57.59 56.35 1.24 1.38 0.94 1.90 1545  0.00366 0.35
FL 144 41.85 40.47 1.38 220 0.76 4.85 1.891 0.41912 2.54
PR 144 36.31 34.32 1.99 230 0.58 5.31 3.972  0.01996 1.32
PA 143 36.29 34.87 1.43 195 0.56 3.83 2.035  0.38940 1.41
PO 144 45.54 43.27 2.27 3.00 0.66 9.03 5157  0.47913 3.40
All 719 43.53 41.87 1.66 223 094 4.98 2.762  0.00011 2.21
Sites

"Prosper, North Dakota (ND); Citra, Florida (FL); Isabella, Puerto Rico (PR); Palmira, Colombia (PA),
and Popayan, Colombia (PO).

2ME = Nash and Sutcliffe [48] model efficiency; MSE = mean squared error; Bias?, SDSD, and LCS
present the decomposition of MSE.

SDMLM = Dynamic Mixed Linear Module; DMLM-DL = Dynamic Mixed Linear Module with day length
from the CSM model; DPLM = Dynamic Piecewise Linear Module as integrated in CSM-CROPGRO-
Drybean for flowering prediction; CSMG = Original CSM-CROPGRO-Drybean model using GSPs
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Figure 2. Observed versus simulated time to first flower across all five sites for the
dynamic mixed linear module (DMLM) (A); the dynamic mixed linear model using the
day length computed by the crop module (DMLM-DL) (B); the dynamic piecewise
linear module incorporated into CSM-CROPGRO-Drybean (DPLM) (C), and the
original CSM-CROPGRO-Drybean model using genetic specific coefficients (CSMG)
(D). For A, B, and C, the modules simulated for each RIL and for all sites, while for D
the simulations were conducted based on the genetic specific coefficients based on
Acharya et al. [38]. Each point represents an observed & simulated RIL; the solid 1:1
diagonal line represents equal values for time to first flower. R2adj for graph D is the
average of the values across all five sites for each RIL. The five experimental sites
are: Prosper, North Dakota (ND); Citra, Florida (FL); Puerto Rico (PR); Palmira,

Colombia (PA) and Popayan, Colombia (PO).
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2.3.2. Dynamic piecewise linear module

The highest maximum rate for any genotype in the MET dataset was
0.0345 and the lowest observed maximum rate for any genotype was 0.0222. This
means that the duration from planting to first flower varied from 29 to 45 days among
genotypes under optimal environmental conditions. These maximum rates of
development occurred at the tropical PA and PR locations where temperatures were
warm and day lengths were relatively short. Although environmental conditions may
not have been optimal at these locations, most of the maximum rates across
locations for any RIL occurred in PA; only a few occurred in PR where the maximum
rates for some RILs were only slightly higher than in PA. These results could likely be
improved by using other datasets, ideally under more controlled environmental
conditions.

The main purpose of Equation (12) is to prevent predictions of excessively
high values for the development rate that could lead to unrealistically low predictions
for the number of days to first flower appearance under environmental conditions with
a high temperature, a short day length, and a high solar radiation values that are
likely to occur in many environments. This equation was incorporated in the DPLM
module and integrated into the full DPLM-CSM hybrid model.

FRMAX, = 2.79856 x 10~ (12)
+1.07126 x 1073 .QTLy
+1.24937 x 1073 .QTL,
—3.53505x 107*.QTLs,
+3.99455 x 107 . QTL, ,
+7.08516 x 1075 . QTLs
+5.63062x 10 . QTLg,
— 428549 x 107* . QTL,
235099 x 107* . QTLg,,
~6.09052 x 10~* . QTLq,,
— 297020 x 10™* . QTLy,,
+6.35384x 107 . QTLy,
— 231698 x 107 . QTLy,
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The fitting of FRMAXy using Equation (12) resulted in predicted caps on

the rate of progress for the 187 RILs plus the two parents of our dataset with a RMSE
of 1.66 days, ME of 0.77 days and MSE of 2.78 (Figure 3). These values indicate that
the maximum developmental rates were affected by the genetic factors (12 QTLs).
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Figure 3. Maximum observed versus simulated time to first flowering for each RIL
across all five sites based on a linear model dependent on the 12 QTLs alleles for the
187 RIL plus the two parental lines. RMSE = Root Mean Square Error; ME = Model
Efficiency (Nash and Sutcliffe [48]). The solid 1:1 diagonal line represents equal
values of maximum simulated/observed time to first flowering.
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Figure 4. Overview of the DPLM-CSM model developed to integrate the CSM-
CROPGRO-Drybean model (CSMG) with the Dynamic Piecewise Linear Module
(DPLM) using a new gene-based module (GBM). The DPLM simulates the first time
of first flowering module developed from the dynamic mixed linear model first
developed by Vallejos et al. [44]. The integrated model uses QTL data, which
contains the 12 QTL allele information to simulate the daily rate of development
towards first flowering, in addition to the other input data used by the original CSMG.

2.3.3. Structural changes of the CSM-CROPGRO-Drybean model

The new gene-based module (GBM) operates on a daily time step in the
DPLM-CSM phenology module to simulate the rate of development towards first
flowering for a particular RIL or cultivar and for a specific site, as shown in Figure 4.
This GBM module incorporates the DPLM module and processes the QTL data
obtained from the revised BNGROO047.GEN file, while weather data are passed to
the DPLM module from the CSMG routines. When the value of SUMFRDs (1)
reaches 1.0 (Equation (6)), the day of first flower is simulated to occur and this date
is passed back to the phenology module for its use in updating first flowering in the

reproductive development module.
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The DPLM module was designed to be flexible, operating in parallel with
the original CSMG using GSPs. This allows the CSMG model to work in a hybrid
mode using either the original cultivar coefficients or the QTL input data to simulate
the development of first flowering. Regardless, all other stages in the DPLM-CSM
model are simulated using inputs from the original cultivar coefficient file. This option
was added as a new switch in the crop management input file (FileX). When this
switch is set to Y’ the DPLM-CSM model uses the DPLM module and the QTL input
data to simulate the time of first flower. Otherwise if the switch is set to ‘N’, the
DPLM-CSM model uses the original GSPs for all phenological development stages,
including the prediction of flowering, and the DPLM module is ignored. These
changes do not affect any other phenological processes in the crop growth model. In
this way, additional dynamic gene-based modules can be added to the GBM to
simulate other vegetative and reproductive processes.

234. Comparing simulated and observed frequency distributions of time
to flower

The simulated and observed frequency distributions of days between
sowing and first flower are presented in Figure 5 for the DPLM module simulations
(left panel) and for observed data from the MET study (right panel). The shapes of
the simulated distributions appeared to be bimodal for all locations except for ND
where it showed a distribution close to normal. The distributions for the observed
data did not exhibit bimodal characteristics, except for the PO site, which had cooler
temperatures than the other sites. QTL2, which is associated with the growth habit
gene Fin, shows interaction with Tmin and is likely responsible for this bimodality
[18]. Also, on average, the indeterminate growth habit RILs generally flowered later
than the determinate growth habit RILs. These graphs showed that Calima flowered
earlier than Jamapa except for the ND site. The time-to-flowering pattern of the two
parents was captured by the module. Bhakta et al. [18] detected this transgressive
behavior of some RILs, those flowering earlier or later than the parents, a
phenomenon explained by the presence of genes that accelerate development and
others that retard development in both parents.

Table 3 shows a comparison using various measures of agreement
between the simulated and observed data for DMLM, DMLM-DL, DPLM, and CSMG.
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The simulation results of the DPLM module displayed a strong agreement between
the simulated and observed time to first flower (Figure 2(C) and Table 3). Simulated
results showed an average bias of 0.55, a RMSE of 2.73 days, a ME of 0.90, a MSE
of 7.46 and an adjusted R2 of 0.905. The differences between the simulated and
observed values were larger for ND than for the other sites. The average bias for ND
was 0.38, the RMSE was 4.55 days, and the ME was 0.30, whereas the
corresponding values for the other four sites showed a much closer agreement
between the simulated and observed days to first flower. Comparisons of these
agreement indicators with those for the DMLM and DMLM-DL modules showed
nearly identical bias, RMSE, and ME values, demonstrating that the implementation
of the DPLM module provided simulated results that were nearly identical to the other
two module versions listed in Table 3.

The original CSMG mostly produced simulated days to first flower that
were in closer agreement with observed results across all sites than the other
modules (Table 3 and Figure 2(D)). However, these results are misleading in that the
GSPs that produced these results were estimated for each individual RIL, which
means that only 5 data points were used to estimate 3 GSPs for each RIL, and thus
the agreements were forced in the GSP estimation process. The adjusted R2 was
calculated using five parameters for each RIL; the 113 RILs that had observations for
all five sites resulted in estimating 339 GSP parameters. The adjusted R2 averaged
for the RILs was 0.866, ranging from 0.321 to 0.997 with a standard deviation of
0.129. However, note that the adjusted R2 values were lower than all of those for the
gene-based modules for each site except at ND. As Acharya et al. [38] point out, the
estimated GSPs were highly uncertain and that different combinations of the GSPs
could provide the same fit to observed data (showing equifinality in the estimation
process) such that the GSP estimates are not reliable even though they can nearly
reproduce the data. Estimating three parameters with only five data points, then
repeating this process for each of the RILs, results in estimates that reliably
reproduce the data used to estimate them but should not be interpreted as values
that can be used for other environments or genotypes. Estimation of these
coefficients also requires considerable effort and resources, which has to be
repeated every time a new cultivar is released. Instead, statistical gene-based
modules can estimate independently phenotypic traits using as input G, E, and G x E
interactions data. By contrast, estimating the 25 coefficients in the dynamic linear
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module (Equation (11)) used all data across the five sites and 189 (RILs plus
parents), thus 945 observations were used to estimate 25 coefficients. Therefore,
using the dynamic mixed linear module estimation process has potential for a more
robust use of the module across environments and genotypes, especially for a new
genotype that has QTL information but does not have field phenotype data.

The frequency distributions associated with genetic variation in the RIL
population for simulated time to first flower at each site and for the five temperature
scenarios are shown in Figure 6. The comparisons of the means and standard
deviations of the populations for each 4-temperature/site combination are
summarized in Table 4. These results demonstrate the effects of including the
maximum rate of development (FRMAXjy) for each genotype in the DPLM module for
comparison with the module without this upper limit. The largest differences in
simulated days to first flower occurred when the temperature was increased by 4 °C
(Table 4) at sites with higher temperatures. For example, for the PR site, increasing
the daily Tmin and Tmax values by 4 °C only decreased the mean days to first flower
by 0.6 days for the DPLM module, whereas the increase in temperature by 4 °C
unrealistically decreased the mean days to first flower by 5.1 days for the DMLM-DL
module. In contrast, results for the cooler sites (PO and ND) were similar for both
module versions. The frequency distributions (Figure 6) visually demonstrate the
effect of the FRMAXy on days to first flower. The distributions for PO and ND shifted
to the left for each temperature increase of 1 °C, indicating a more rapid rate of
development for each site, whereas the distributions of responses of the same
populations at the warm sites (PR and PA) changed very little even for the 4 °C
temperature increase.

We are not suggesting that use of the upper limit on development rate is
robust for broad use, but instead that the MET should include more sites that have a
wider range of temperatures and day lengths to enable nonlinear responses to be
estimated. For example, improvements could be attained using a beta function for
temperature response, in addition to controlled environment experiments with a wider
range of genetic material to develop nonlinear functions to represent the full range of

environmental responses in this crop species.

2.3.5. Simulating response distributions for all potential genotype
combinations
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The performance of DPLM module across the five experimental sites was
simulated for RILs with all possible allelic combination (4096) of the twelve QTLs
used by the dynamic time-to flower module. Frequency distributions for the number
of days from planting to first flower were produced for each location (Figure 7). The
dots in the figure highlight the number of days required for the Jamapa and Calima
parents to reach the stage of first flowering. The simulated first flowering dates at the
ND site were later (mean of 59.1 days) and had a larger standard deviation (9.10
days) compared to the other sites. The spread of simulated days to first flower
ranged between 41 and 94 days at ND due to its longer day lengths and some days
with cooler temperatures than other sites. The smallest average number of days to
first flower was for sites with high temperature conditions and short day lengths (PR
and PA), where simulated means were about 36 days for both locations, and
standard deviations of 2.6 and 2.6 days, respectively, with response ranges varying
from 34 to 39 days for each location. The FL and PO sites with their warm conditions
showed simulated means of 42 days and 45 days, respectively, and standard
deviations of 3.5 days and 3.9 days, respectively. The shapes of the distributions
were bell-shaped across all sites except for ND which showed the flattest shape due
to the G, E, G x E, and G x G interactions in the mixed piecewise dynamic module.
The altered behavior of the parental lines was also found in these simulations, where
Jamapa flowered earlier than Calima for the FL, PA, PO, and PR sites and Calima

flowered earlier than Jamapa for the ND site.
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Figure 5. Density plots of time to first flower in days across five sites. Distribution of
simulated time to first flower using the dynamic piecewise linear module (DPLM) (left
panel) and the distribution of observed time to first flower (right panel). The parental
lines Jamapa and Calima are highlighted at the top of each distribution. The five
experimental sites are: Prosper, North Dakota (ND); Citra, Florida (FL); Puerto Rico
(PR); Palmira, Colombia (PA) and Popayan, Colombia (PO).
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Table 4. Temperature sensitivity analysis for the simulated number of days to first
flower for the dynamic piecewise linear module (DPLM) and the dynamic mixed linear
module with CSM-CROPGRO-Drybean day length (DMLM-DL) using the original

weather data from the five sites

Site’ DPLM DMLM-DL
Simulated Min? Max?  Standard | Simulated Min Max Standard
Mean Deviation Mean Deviation
Base Temperature

ND’ 57.37 46 76 5.14 58.32 47 77 5.17

FL 4214 35 51 3.74 43.03 36 51 3.67

PR 36.01 31 43 2.94 36.88 32 43 2.85

PA 36.36 31 44 3.07 37.18 32 43 2.94

PO 45.07 37 55 4.87 46.08 38 56 4.88

All Sites 43.08 31 76 8.56 43.98 32 77 8.58
Base Temperature + 1 °C

ND 54.74 45 72 4.81 55.66 46 73 4.83

FL 40.29 34 49 3.53 41.04 35 49 3.38

PR 35.48 30 43 2.97 35.40 31 41 2.55

PA 35.77 30 44 3.10 35.69 31 41 2.65

PO 42.87 36 52 4.20 43.86 37 53 4.21

All Sites 41.54 30 72 7.77 42.03 31 73 8.02
Base Temperature + 2 °C

ND 52.37 43 68 4.49 53.13 44 69 4.58

FL 38.81 33 48 3.36 39.29 34 47 3.07

PR 35.39 30 43 2.99 34.09 30 39 2.33

PA 35.69 30 44 3.13 34.29 30 40 2.41

PO 40.81 34 49 3.78 41.80 35 50 3.78

All Sites 40.34 30 68 6.97 40.24 30 69 7.51
Base Temperature + 3 °C

ND 50.03 42 64 4.26 50.70 42 65 4.39

FL 37.67 32 46 3.21 37.68 33 45 2.71

PR 35.36 30 43 3.00 32.85 29 38 2.14

PA 35.68 30 44 3.13 33.07 29 38 2.20

PO 39.03 33 46 3.31 40.01 34 47 3.30

All Sites 39.31 30 64 6.21 38.60 29 65 7.00
Base Temperature + 4 °C

ND 47.91 40 62 4.08 48.48 41 63 414

FL 36.88 32 45 3.06 36.21 32 43 2.46

PR 35.36 30 43 3.00 31.77 28 36 1.96

PA 35.68 30 44 3.13 31.95 28 37 2.01

PO 37.50 32 45 3.12 38.34 33 45 3.01

All Sites 38.44 30 62 5.57 37.10 28 63 6.54

"Prosper, North Dakota (ND); Citra, Florida (FL); Isabella, Puerto Rico (PR); Palmira, Colombia (PA),
and Popayan, Colombia (PO).

2 Minimum/Maximum simulated number of days from sowing to first flower.
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Figure 6. Density plots of distributions for simulated time to first flower (in days) using
the dynamic piecewise linear module (DPLM). Simulated days between planting to
first flower shows the responses to increasing the base maximum and minimum
temperature from 1 °C through 4 °C. The five experimental sites are: Prosper, North
Dakota (ND); Citra, Florida (FL); Puerto Rico (PR); Palmira, Colombia (PA) and
Popayan, Colombia (PO).
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Figure 7. Density plots for simulated time to first flower (days) across the five sites
showing all possible genetic combinations. The distribution of simulated days to
flower by site includes all recombinant inbred line combinations (212 = 4096) as

simulated by the dynamic piecewise linear module (DPLM), while dots at the top of

each distribution represent the simulated parental lines Jamapa and Calima. The five
experimental sites are: Prosper, North Dakota (ND); Citra, Florida (FL); Puerto Rico
(PR); Palmira, Colombia (PA) and Popayan, Colombia (PO).

2.3.6. Yield prediction
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For each of the five sites, we simulated yield using the original CSMG
model and the original GSPs that were calibrated by Acharya et al. [38] for each
individual RIL. For the MET crop management practices and one year of
environmental conditions (Figure 1), simulated mean yield by CSMG was lowest for
PA (190.0 £ 89 kg/ha) and highest for ND (637.3 + 242 kg/ha) while for the other
three sites mean yield ranged from 304.7 + 135 kg/ha for FL, 505.0 £ 270.0 kg/ha for
PO, and 540.0 £+ 244.8 kg/ha for PR (Figure 8). For the DPLM-CSM hybrid model,
simulated yield ranking among the five sites was similar. The highest mean yield was
obtained for ND (720.0 + 291.0 kg/ha), while the lowest mean yield was obtained for
PA (234.4 + 104.2 kg/ha). Mean yield for FL was 354.8 £ 156.4 kg/ha, for PO was
625.0 + 311.2 kg/ha, and for PR was 673.3 + 264.7 kg/ha (Figure 8). The differences
in yield were due to the slight differences in simulated flowering dates between the
original CSMG model and the DPLM-CSM hybrid model (Figure 2 and Figure 5),
while all other growth and development processes were simulated exactly the same
as the CSMG model using the same inputs (Figure 4).

2.3.7. Further advancement in gene-based modeling

This work presents an approach for incorporating gene-based modules
into an existing crop growth model for simulating days to first flower (by the DPLM
module) and simulating all other processes and final yield using original components
of the CSMG. It builds on the approach discussed by Vallejos et al. [44]. Only minor
modifications were needed to enable their dynamic model to be integrated as a
module into the existing CSMG model [30], [40]. There were only small differences
between results from the dynamic piecewise linear module integrated into the CSMG
model from our work and model results published by Vallejos et al. [44]. We
recognize the need for use of independent data to evaluate the predictive capabilities
in other environments and are working on that. In addition, there is a need to use a
more diverse population to evaluate the ability of the model to predict first flower
occurrence across genetic variation that may not be in the population used in the
MET dataset.
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Figure 8. Density plot for simulated yield using the original CSM-CROPGRO-Drybean
model and genetic specific coefficients (CSMG) (left panel) and the dynamic
piecewise linear module (DPLM) integrated with the CSM-CROPGRO-Drybean
model (right panel). The five experimental sites are: Prosper, North Dakota (ND);
Citra, Florida (FL); Puerto Rico (PR); Palmira, Colombia (PA) and Popayan,
Colombia (PO).

The model integration approach used here is different from previously
published approaches because it incorporates a gene-based dynamic model to

replace an existing dynamic component in a comprehensive crop growth simulation
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model. The approach used for integrating the gene-based first flower module into the
CSMG model possibly can be used to incorporate other gene-based modules to
systematically transition from a GSP-based model to a gene-based model [53]. In
this work, we only added one type of input data, the genetic information for each RIL
and parent. All of the other inputs in the original crop model were not modified, and
information on planting date and daily weather data were used by the new gene-
based time to flower module, ensuring consistency in inputs across all existing and
new components of the model.

This work also shows that integrating the genetic information is a
promising approach to predict plant development stages of new genotypes and new
environments. Instead of estimating GSPs for a specific trait, it requires less effort
when a new cultivar is released in that only QTL information is required, saving time
and resources that would be otherwise needed for phenotyping. The long-term
expectation associated with most QTL studies is the replacement of each QTL linked
marker with the gene responsible for that particular QTL effect. This work further
shows that genetic modules for other processes can be based on statistical methods
that are routinely used by geneticists, if they are developed to replace equivalent
modules in existing dynamic crop models.

However, it is clear that considerably more progress is needed to identify
other issues that might occur by combining these two types of models. There is a
need to extend gene-based modules to cover the full genetic variability of a crop and
to introduce other process modules into existing models. Further work is required to
improve the gene-based module and to add other processes that are linked
dynamically with the crop model.

2.4. CONCLUSION

This study showed the potential for integrating a process-oriented gene-based
module that only requires genetic input information into an existing comprehensive
crop model with its empirical cultivar inputs without changing other modules or inputs.
The CSM-CROPGRO-Drybean model with the integrated gene-based module was
able to not only predict flowering date using only QTL and weather information, but
also final yield using the original GSPs for all processes except rate of progression to
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first flower. This approach can be extended to other processes for which QTL

information is readily available.



51

3. FINAL REMARKS

The extension of the gene-based module into the crop growth model for
future processes are important to keep improving this new approach by connecting
genetic mechanisms that increase the granularity of the model. Based on robust the
structure of the CSM-CROPGRO-Drybean for phenotypic responses, and availability
of the multi-environment trial in this work for further scientific advances a major target
is to simulate main stem node number which can be determined by the time between
two successive leaves.

Including this development phase, we aim to simulate main stem node
number over time with an approach to evaluate the crop model response due to
growth rate and duration of vegetative phase of development that is important for the
success of the reproductive phase and affect the crop yield.

Further advancements are needed in the core of the gene-based module
where development of loosely coupled components can be an option to extend and
provide an easily dynamic manipulation of new equations and QTL information.
These advances aim to continue extend and fully explore the existing crop growth
model, and the gene-based module simulating and predicting yield for multi-
environments and a wide range of cultivars accelerating the development of the next
generation of gene-based crop models.

Also, the multi-disciplinary collaboration among crop modelers, plant
breeders, geneticists, and physiologists are important to lead further advancing
linking QTLs to markers for new cultivars and different crops the data availability to

link other processes dynamically.



52

[1]
[2]
[3]
[4]
[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

REFERENCES

GODFRAY, H. C. J. et al. Food Security: The Challenge of Feeding 9 Billion
People. Science. vol. 327, no. 5967. p. 812 LP — 818. 2010.

FOLEY, J. A. et al. Solutions for a cultivated planet. Nature. vol. 478, no. 7369.
p. 337-342. 2011.

RAY, D. K. et al. Recent patterns of crop yield growth and stagnation. Nature
Communications. vol. 3, no. 1. p. 1293. 2012.

RAY, D. K. et al. Yield Trends Are Insufficient to Double Global Crop
Production by 2050. PLOS ONE. vol. 8, no. 6. p. €66428. 2013.

HATFIELD, J. L.; WALTHALL, C. L. Meeting Global Food Needs: Realizing the
Potential via Genetics x Environment x Management Interactions. Agronomy
Journal. vol. 107, no. 4. p. 1215-1226. 2015.

JONES, J. W. et al. Brief history of agricultural systems modeling. Agricultural
Systems. vol. 155. p. 240-254. 2016.

MESSINA, C. D. et al. A Gene-Based Model to Simulate Soybean
Development and Yield Responses to Environment. Crop Science. vol. 46, no.
1. p. 456-466. 2006.

HWANG, C. et al. Next generation crop models: A modular approach to model
early vegetative and reproductive development of the common bean
(Phaseolus vulgaris L). Agricultural Systems. vol. 155. p. 225-239. 2017.
ROSENZWEIG, C. et al. The Agricultural Model Intercomparison and
Improvement Project (AgMIP): Protocols and pilot studies. Agricultural and
Forest Meteorology. vol. 170. p. 166—-182. 2013.

BOOTE, K. J. et al. Putting mechanisms into crop production models. Plant,
Cell & Environment. vol. 36, no. 9. p. 1658-1672. 2013.

RASHEED, A. et al. Crop Breeding Chips and Genotyping Platforms: Progress,
Challenges, and Perspectives. Molecular Plant. vol. 10, no. 8. p. 1047-1064.
2017.

THOMSON, M. J. High-Throughput SNP Genotyping to Accelerate Crop
Improvement. Plant Breeding and Biotechnology. vol. 2, no. 3. p. 195-212.
2014.

BUSH, W. S.; MOORE, J. H. Chapter 11: Genome-Wide Association Studies.
PLOS Computational Biology. vol. 8, no. 12. p. €1002822. dez. 2012.
HUANG, X.; HAN, B. Natural Variations and Genome-Wide Association
Studies in Crop Plants. Annual Review of Plant Biology. vol. 65, no. 1. p. 531-
551. 2014.

WHITE, J. W.; HOOGENBOOM, G. Gene-Based Approaches to Crop
Simulation. Agronomy Journal. vol. 95, no. 1. p. 52—64. jan. 2003.

WHITE, J. W. From genome to wheat: Emerging opportunities for modelling
wheat growth and development. European Journal of Agronomy. vol. 25, no. 2.
p. 79-88. 2006.

YIN, X.; STRUIK, P. C. Modelling the crop: from system dynamics to systems
biology. Journal of Experimental Botany. vol. 61, no. 8. p. 2171-2183. 2010.
BHAKTA, M. S. et al. A predictive model for time-to-flowering in the common
bean based on QTL and environmental variables. G3: Genes, Genomes,
Genetics. vol. 7, no. 12. p. 3901-3912. 2017.

SCHMUTZ, J. et al. A reference genome for common bean and genome-wide



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

53

analysis of dual domestications. Nature Genetics. vol. 46, no. 7. p. 707—-713.
2014.

YIN, X.; VAN DER LINDEN, C. G.; STRUIK, P. C. Bringing genetics and
biochemistry to crop modelling, and vice versa. European Journal of
Agronomy. vol. 100. p. 132-140. 2018.

SPINDEL, J. E. et al. Genome-wide prediction models that incorporate de novo
GWAS are a powerful new tool for tropical rice improvement. Heredity. vol.
116, no. 4. p. 395-408. 2016.

BROWN, T. B. et al. TraitCapture: genomic and environment modelling of plant
phenomic data. Current Opinion in Plant Biology. vol. 18. p. 73—79. 2014.
COOPER, M. et al. Use of Crop Growth Models with Whole-Genome
Prediction: Application to a Maize Multienvironment Trial. Crop Science. vol.
56, no. 5. p. 2141-2156. 2016.

THORBURN, P. J. et al. Recent advances in crop modelling to support
sustainable agricultural production and food security under global change.
European Journal of Agronomy. vol. 100. p. 1-3. 2018.

HUNT, L. A. et al. GENCALC: Software to Facilitate the Use of Crop Models for
Analyzing Field Experiments. Agronomy Journal. vol. 85, no. 5. p. 1090-1094.
1993.

ANOTHALI, J. et al. A sequential approach for determining the cultivar
coefficients of peanut lines using end-of-season data of crop performance
trials. Field Crops Research. vol. 108, no. 2. p. 169-178. 2008.
BUDDHABOCON, C.; JINTRAWET, A.; HOOGENBOOM, G. Methodology to
estimate rice genetic coefficients for the CSM-CERES-Rice model using
GENCALC and GLUE genetic coefficient estimators. The Journal of
Agricultural Science. vol. 156, no. 4. p. 482—-492. 2018.

WHITE, J. W.; HOOGENBOOM, G. Simulating Effects of Genes for
Physiological Traits in a Process-Oriented Crop Model. Agronomy Journal. vol.
88, no. 3. p. 416—-422. 1996.

HOOGENBOOM, G.; JONES, J. W.; BOOTE, K. J. Modeling growth,
development, and yield of grain legumes using SOYGRO, PNUTGRO, and
BEANGRO: a review. vol. 35, no. 6. p. 2043-2056. 1992.

HOOGENBOOM, G. et al. BEANGRO: A Process-Oriented Dry Bean Model
with a Versatile User Interface. Agronomy Journal. vol. 86, no. 1. p. 182—-190.
1994.

YIN, X. et al. Coupling estimated effects of QTLs for physiological traits to a
crop growth model: predicting yield variation among recombinant inbred lines in
barley. Heredity. vol. 85, no. 6. p. 539-549. 2000.

YIN, X. et al. Crop Modeling, QTL Mapping, and Their Complementary Role in
Plant Breeding. Agronomy Journal. vol. 95, no. 1. p. 90-98. 2003.

REYMOND, M. et al. Combining Quantitative Trait Loci Analysis and an
Ecophysiological Model to Analyze the Genetic Variability of the Responses of
Maize Leaf Growth to Temperature and Water Deficit. Plant Physiology. vol.
131, no. 2. p. 664 LP — 675. 2003.

HAMMER, G. L. et al. Adapting APSIM to model the physiology and genetics of
complex adaptive traits in field crops. Journal of Experimental Botany. vol. 61,
no. 8. p. 2185-2202. 2010.

GU, J. et al. Linking ecophysiological modelling with quantitative genetics to
support marker-assisted crop design for improved yields of rice (Oryza sativa)
under drought stress. Annals of Botany. vol. 114, no. 3. p. 499-511. 2014.



54

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

TECHNOW, F. et al. Integrating Crop Growth Models with Whole Genome
Prediction through Approximate Bayesian Computation. PLOS ONE. vol. 10,
no. 6. p. e0130855. 2015.

WALLACH, D. et al. A dynamic model with QTL covariables for predicting
flowering time of common bean (Phaseolus vulgaris) genotypes. European
Journal of Agronomy. vol. 101. p. 200-209. 2018.

ACHARYA, S. et al. Reliability of genotype-specific parameter estimation for
crop models: Insights from a Markov chain Monte-Carlo estimation approach.
Transactions of the ASABE. vol. 60, no. 5. p. 1699-1712. 2017.

BOOTE, K. J. et al. The CROPGRO model for grain legumes. in Understanding
Options for Agricultural Production. 7" ed. G. Y. Tsuji, G. Hoogenboom, and P.
K. Thornton, Eds. Dordrecht: Springer Netherlands. 1998. p. 99-128.

JONES, J. W. et al. The DSSAT cropping system model. European Journal of
Agronomy. vol. 18, no. 3. p. 235-265. 2003.

HOOGENBOOM, G. et al. The DSSAT crop modeling ecosystem. in Advances
in crop modelling for a sustainable agriculture. Burleigh Dodds Science
Publishing. 2019. p. 173-216.

BOOTE, K. J. et al. Genetic Coefficients in the CROPGRO-Soybean Model
Florida Agric. Exp. Stn. Journal Series no. R-08652. Supported in part by
grants from the United Soybean Board and the Soybean Research and
Development Council. Agronomy Journal. vol. 95, no. 1. p. 32-51. 2003.
BHAKTA, M. S.; JONES, V. A.; VALLEJOS, C. E. Punctuated distribution of
recombination hotspots and demarcation of pericentromeric regions in
Phaseolus vulgaris L. PLoS ONE. vol. 10, no. 1. p. 1-20. 2015.

VALLEJOS, C. E. et al. Dynamic Gene-Based Ecophysiological Model to
Predict Phenotype from Genotype and Environment Data. Submitted in 2021.
2021.

WHITE, J. W.; HOOGENBOOM, G.; HUNT, L. A. A Structured Procedure for
Assessing How Crop Models Respond to Temperature. Agronomy Journal. vol.
97, no. 2. p. 426—439. 2005.

RITCHIE, J. T.; NESMITH, D. S. Temperature and Crop Development.
Modeling Plant and Soil Systems. p. 5-29. 1991.

BATES, D. et al. Fitting Linear Mixed-Effects Models Using Ime4. Journal of
Statistical Software; Vol 1, Issue 1 (2015). 2015.

NASH, J. E.; SUTCLIFFE, J. V. River flow forecasting through conceptual
models part | — A discussion of principles. Journal of Hydrology. vol. 10, no. 3.
p. 282—-290. 1970.

WALLACH, D. et al. Chapter 9 - Model Evaluation. in Working with Dynamic
Crop Models. 3™ ed. D. Wallach, D. Makowski, J. W. Jones, and F. Brun, Eds.
Academic Press. 2019. p. 311-373.

KOBAYASHI, K.; SALAM, M. U. Comparing Simulated and Measured Values
Using Mean Squared Deviation and its Components. Agronomy Journal. vol.
92, no. 2. p. 345-352. 2000.

WALLACE, D. H.; ENRIQUEZ, G. A. Daylength and temperature effects on
days to flowering of early and late maturing beans (Phaseolus vulgaris L.).
Journal of American Society for Horticultural Science. vol. 105. p. 583-591.
1980.

WALLACE, D. H. et al. Photoperiod, Temperature, and Interaction Effects on
Days and Nodes Required for Flowering of Bean. Journal of the American
Society for Horticultural Science. vol. 116, no. 3. p. 534-543.



[53]

95

HOOGENBOOM, G.; WHITE, J. W.; MESSINA, C. D. From genome to crop:
integration through simulation modeling. Field Crops Research. vol. 90, no. 1.
p. 145-163. 2004.



56



57

SUPPLEMENTARY MATERIAL

Table S1. Recombinant inbred lines for common bean (Phaseolus vulgaris L.). Each
Quantitative trait loci (QTL) has a marker value according to its allelic identity,
assigned as “+1” for Calima alleles and “-1” for Jamapa alleles. This information was
used as input for the Gene Based Module coupled with the CSM-CROPGRO-
Drybean model.

RIL QTL1 QTL2 QTL3 QTL4 QTLS5 QTL6 QTL7 QTL8 QTL9 QTL10 QTL11 QTL12

Calima 1 1 1 1 1 1 1 1 1 1 1 1
Jamapa -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
RIJCO001 -1 -1 -1 1 -1 -1 -1 -1 1 1 1 1
RIJC002 1 -1 1 1 1 -1 -1 -1 -1 1 -1 -1
RIJC003 1 1 1 1 1 1 -1 1 -1 -1 1 1
RIJC004 -1 -1 -1 -1 1 1 -1 1 1 1 -1 -1
RIJC005 1 1 1 -1 1 -1 -1 -1 -1 -1 1 1
RIJC006 1 1 1 1 1 1 -1 -1 1 -1 1 1
RIJCO07 1 -1 1 1 1 1 -1 1 1 -1 -1 -1
RIJC008 1 1 1 1 -1 -1 -1 1 -1 -1 1 1
RIJC009 -1 -1 -1 1 1 -1 -1 1 -1 1 1 1
RIJCO011 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
RIJC012 1 1 1 1 -1 -1 -1 1 -1 -1 1 1
RIJCO013 1 1 1 1 -1 -1 -1 -1 1 -1 1 1
RIJC014 1 1 1 1 1 1 1 -1 1 1 1 1
RIJCO15 1 1 1 1 -1 1 -1 -1 1 -1 1 1
RIJCO016 -1 -1 -1 -1 -1 -1 1 -1 1 -1 -1 -1
RIJCO017 -1 -1 1 1 -1 -1 -1 1 -1 -1 1 1
RIJC018 1 1 1 1 1 1 1 -1 1 1 -1 1
RIJCO019 1 1 1 1 -1 -1 1 1 -1 1 -1 -1
RI1JC020 1 1 -1 -1 -1 -1 -1 -1 1 1 -1 -1
RI1JC021 1 1 1 -1 -1 1 1 1 -1 -1 -1 -1
R1JC022 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1
RIJC024 -1 -1 1 1 1 1 -1 1 -1 1 -1 -1
RIJC025 -1 1 1 -1 -1 -1 -1 -1 1 -1 1 1
RI1JC026 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
RIJC027 1 -1 1 1 1 1 -1 1 -1 1 -1 -1
R1JC029 1 1 1 1 -1 -1 1 1 -1 1 -1 -1
RIJC030 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1
RIJC031 -1 -1 -1 -1 1 1 1 -1 -1 1 1 1
RIJC032 -1 -1 -1 -1 1 1 -1 -1 1 -1 -1 -1
RIJC045 1 1 1 1 -1 -1 -1 1 1 -1 -1 -1
RIJC046 1 -1 -1 -1 1 1 1 1 -1 1 -1 1
RIJC047 1 1 1 1 1 1 1 1 -1 -1 -1 -1
RIJC048 -1 -1 -1 -1 1 1 1 -1 -1 1 -1 -1
RIJC049 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1
RIJC059 -1 -1 1 1 1 1 -1 -1 -1 1 1 1
RIJC061 -1 1 1 1 -1 -1 1 -1 1 1 1 1
RIJC062 1 1 1 -1 1 -1 -1 -1 1 1 -1 -1
RIJC064 1 1 -1 1 1 1 1 1 1 -1 -1 -1
RIJC065 1 -1 -1 1 1 1 1 1 -1 -1 -1 -1
RIJC066 1 1 1 1 1 1 1 1 1 1 1 1
RIJC067 -1 -1 -1 -1 -1 1 -1 -1 -1 1 1 1
RIJC069 -1 -1 -1 -1 1 1 -1 -1 -1 1 1 1
RIJCO70 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1
RIJCO71 1 1 1 -1 1 1 1 1 -1 1 1 -1
RIJCO72 -1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1
RIJCO73 -1 -1 -1 -1 1 1 -1 1 -1 -1 1 1
RIJCO74 1 1 1 1 1 1 1 -1 1 -1 1 -1
RIJCO75 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 1 1
RIJCO76 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1
RIJCO78 1 1 -1 1 1 -1 1 -1 -1 -1 1 1
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RIJC373 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
RIJC374 1 1 -1 -1 -1 -1 1 -1 -1 1 - -
RIJC375 -1 1 -1 1 -1 -1 1 -1 1 1

Table S2. Estimated terms in the dynamic QTL effect module showing the estimated
parameter values with confidence intervals and p-value for the rate of progress from

planting to flowering.

Terms*® Estimated 2.5% 97.5% p-value
Intercept 2.35148 x 102 2.33418 x 1072 2.36879 x 102 9.01155 x 102%
Tmaxsg 5.72311 x 10* 5.11997 x 10* 6.32626 x 10* 4.37596 x 1092
Tmins g 5.29789 x 10* 4.87553 x 10* 5.72025 x 10* 1.32239 x 109
DayLsg -1.56357 x 1073 -1.65041 x 10°  -1.47673 x10°  1.53907 x 107152
Srads g -8.50211 x 10 -1.20053 x 10*  -4.99896 x 10" 2.42422 x 10®
QTL1sg 9.41278 x 10* 7.67693 x 10* 1.11486 x 107 1.14674 x 1020
QTL2s4 1.24887 x 107 1.05220 x 103 1.44554 x 1073 6.18612 x 10
QTL3sg -6.08364 x 10*  -8.29898 x 104  -3.86831 x 10* 2.26795 x 107
QTL4sg 2.36803 x 10* 4.20996 x 10 4.31506 x 10 1.81926 x 102
QTL5sg 5.67194 x 10® -1.86555 x 10 1.97899 x 10 9.53950 x 10
QTL6s g 5.27617 x 10* 3.36592 x 10* 7.18642 x 10* 2.07379 x 107
QTL7sg -4.11459 x 10 -5.56487 x 10*  -2.66430 x 10* 9.99240 x 108
QTL8sg -2.11983 x 10 -3.60161 x 10*  -6.38048 x 10°° 5.61825 x 10’3
QTL9sg -4.42610 x 10 -5.83805x 10*  -3.01415x 10* 5.28426 x 10°
QTL10sg -2.50138 x 10 -3.95428 x 10*  -1.04847 x 10 9.14723 x 10*
QTL11sg 3.43389 x 10* 1.22771 x 104 5.64006 x 10* 2.63477 x 10’3
QTL12s4 -1.53677 x 10 -3.72048 x 10* 6.46939 x 10° 1.69555 x 107"
QTL1sg X QTL2:g 3.01579x 104 1.27364x10“  4.75794x 104  8.55786 x 10
Daylsg x QTL3sg -7.66441 x 10 -8.44228 x 10*  -6.88654 x 10 4.92482 x 10756
DayLeg X QTL7<g -1.62459 x 10*  -2.21472x 10%  -1.03446 x 10*  9.57607 x 107
Dayleg x QL1254 -1.45956 x 104 -2.11416 x 10  -8.04965x 10°  1.44756 x 10
Tminsg x QTL2s -2.40896 x 10°  -5.95337 x 10°  1.13545x 10° 1.83307 x 10"
Tminsg x QTL3sg -8.59042 x 10°  -1.28746 x 10  -4.30624 x 10°  9.42280 x 10
Tmaxsg X QTL5sg 8.54093x 10°  3.87125x10°  1.32106 x 104  3.62986 x 10*
Sradsg x QTL12s4 -3.06273 x 10 -6.04701 x 10 -7.84445 x 107 4.46841 x 10

Fixed effects variance
Random effects variance
Residual variance

1.80182 x 10°°
6.34775x 107
1.30567 x 10°®

aPredictor variable are: Intercept represents the overall value of daily development
rate, maximum and minimum temperature (Tmax and Tmin, °C), day length (DayL,
hours) and solar radiation (Srad, MJ m d-'). The rate of progress to flowering rate is
(1/duration from plating to flowering in days) for the gt" genotype for the st site; QTL1
to QTL12 allele effects are represented as +1 for Calima alleles and -1 for Jamapa
alleles.
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Figure S1. Parameter estimation process for predicting first flowering across all sites
using the Dynamic Mixed Linear Module (DMLM)

## cleaning memory and loading R libraries
rm(list=1s())

library ("readr")

library (stats)

library (lmerTest)

library (tidyverse)

### Setup your directory location
setwd ("C:\path\to\my\directory")

##Environmental data
we <- read.table("C:\path\to\environment\data",header=T, sep="',")

# Example of table structure to read the environmental data.
# (data.frame (SITE = character (),

# Srad = numeric (),

# Tmax = numeric (),

# Tmin = numeric(),

# DayL = numeric()))

##Recombinant inbred lines (see Table S1)
rl <- read csv("C:\path\to\QTL\data")

## Part 1 - Parameter estimation

## First of all, provide the observed days to first flowering for each RIL
## and store it as a new column (rl$R1). Then extract the mean of

## environmental data from sowing ## to first flower for each RIL and store
## it as a new column for rl$Sradm, r1$Tminm, rl$Tmaxm and rl$DayLm.

## Mean of environmental data from sowing to first flower across all
## genotypes, sites, years.

#sradMean <- mean (rl$Sradm
#dayMean <- mean (rl$DayLm
#tminMean <- mean (rl1S$Tminm
#tmaxMean <- mean (rl$Tmaxm

- -

##Centering continuous variable
rl$Srad c <-rl$Sradm - sradMean
rl$bay ¢ <-rl$DayLm - dayMean
r1$Tmin ¢ <-r1$Tminm - tminMean
r1$Tmax c <-rl$Tmaxm - tmaxMean

### 1/days to first flowering
r1$Rlrate <- 1/rl1SR1

##Dynamic mixed-effects linear model for first flowering rate
modelrlrate = lmer ((Rlrate)~
Tmax c+
Tmin c+
Day c+
Srad c+
QTL1+QTL2+QTL3+QTL4+QTL5+QTL6+
QTL7+QTL8+QTLO9+QTL1I0+QTL1I1+QTL12+
QTL1*QTL2+
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Day c*QTL3+

Day c*QTL7+

Day c*QTL12+
Tmin c*QTL2+
Tmin c*QTL3+
Tmax c*QTL5+
Srad c*QTL12+
(1|RIL),data=rl)

summary (modelrlrate)

## Part 2 - Estimating daily flowering rate for each RIL at each SITE
predictionlist <- list ()

predictionlist[[1]] =

rbind (predictionlist, c("SITE","RIL", 'Observed', 'Simulated'))
rowcount = 1

stepper <-1

## Change the site based on your data
Sj— <_ c ("ND", "FL", "PR", "PA", "PO")
for (s in si) {

r2<-subset (rl,rl1$SITE==s) # subset QTL data file
wel <- subset (we, SITE==s) # subset weather data file

for (i in l:nrow(r2)) {
SITE <- c(as.character (r2$SSITE[1]))
rsite <- SITE
RIL <- c(as.character (r2SRIL[1]))
Observed <- c(r2SR1[1i])
QTL1 <- c(r2$QTL1[1])

QTL2 <- c(r2$QTL2[1i])
QTL3 <- c(r2$QTL3[1])
QTL4 <- c(r2$QTL4[1])
QTL5 <- c(r2$QTL5[1])
QTL6 <- c(r2$QTL6[1])
QTL7 <= c(r2$QTL7[1])
QTL8 <- c(r2$QTL8[1])
QTLY9 <- c(r2$QTL9[1])
QTL10 <- c(r2$QTL10[i])
QTL11 <- c(r2$QTL11[i])
QTL12 <- c(r2$QTL12[i])

CounterRl = 0
DayCount = 0

for (j in l:nrow(wel)) {
DayCount <- welS$SDAP[]]

# Adjusting weather variables

Srad ¢ <- c(wel$Srad[]j])-sradMean

Day ¢ <- c(wel$DayL[j])-dayMean

Tmax ¢ <- c(wel$Tmax[]])-tmaxMean

Tmin ¢ <- c(wel$Tmin[Jj])-tminMean

rlday <- as.data.frame(SITE,RIL,QTL1,QTL2,QTL3,QTL4,QTLS,
QTL6,QTL7,QTL8,QTLY,QTL10,QTL11,QTL12,
Srad c,Tmin c,Tmax c,Day c)

## Estimating daily flowering rate gain based on "modelrlrate" model
flowerNow <- predict (modelrlrate, re.form=NA,newdata=rlday)
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## counting cumulative flowering rate
CounterR1l = CounterRl + flowerNow[[1]]
dailyRateRl = flowerNow[[1l]]

rowcount = rowcount + 1

## exiting loop when rate reaches 1.00
if (CounterR1[[1]] >= 1.00){
Simulated <- DayCount
predictionlist[[rowcount]] <- c(SITE,RIL,Observed,Simulated)

break}

stepper = stepper +1
print (c (SITE, stepper))
}
}

# converting list to matrix

predictionRate <- as.matrix(do.call ("rbind", predictionlist))

colnames (predictionRate) <-predictionRate[l,] # fixing header row names
predictionRate<-predictionRate[-1,] # removing old header row

##View daily rate prediction for QTL allele combination
View (predictionRate)

#END
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Figure S2. Computer code for the Dynamic Piecewise Linear Module (DPLM)
coupled with the CSM-CROPGRO-Drybean model

Dynamic piecewise linear module, Program,

SUBROUTINE DPLM (CONTROL, ISWITCH, & !Control
WEATHER, YRPLT, & !'Tnput
NR1G, SumFRD) !'Output

USE ModuleDefs

IMPLICIT none

SAVE

CHARACTER* 6 GENID
CHARACTER*30 FILEIO

LOGICAL FRSTFL

INTEGER RUN, DYNAMIC, DAS, YRDOY, YR, DOY, YRPLT
INTEGER DAP, TIMDIF, FDOY, NRI1G

REAL DAYL, SRAD, TMAX, TMIN

REAL SumFRD, FR

REAL FRMAX, DLm, Sradm, Tmaxm, Tminm
REAL, DIMENSION(70) :: QTL

TYPE (ControlType) CONTROL
TYPE (SwitchType) ISWITCH
TYPE (WeatherType) WEATHER

DYNAMIC = CONTROL % DYNAMIC
FILEIO = CONTROL % FILEIO
RUN = CONTROL % RUN

DAS = CONTROL % DAS
YRDOY = CONTROL % YRDOY

KA R A AR A A A A A A A A A A A AR A A AR AR A AR A A AR A AR AR A A A A AR AR A AR A A AR AR A A Ak A Ak Ak Ak Ak vkk k%%
KK R A AR AR A A A A A A A A A AR A A AR A AR AR A A AR AR A A KRR A A A AR A A A AR A A AR AR A A AR A Ak Ak kA Ak Ak k%

Run Initialization - Called once per simulation
R I e I I I b b b I S e I I b b b b db b S I b b b b b e S 4B 2 b b b b S I S I b b b b I a4 b b b b b b b M b 4 b b b b I Ib b b b O 4

IF (DYNAMIC .EQ. RUNINIT) THEN

CALL IPGENE (FILEIO, TF, GENID)

KA R AR AR AR A A A A A A A A A AR A A AR A AR AR A A AR A AR AR A A A A AR A A A AR A A AR AR A A Ak Ak kA Ak Ak k kK k%
KA A AR AR AR A A A A A A A A A AR A A AR AR KA A AR A AR AR A AR A A A A A A A A A AR A A AR AR A A Ak A Ak Ak Ak Ak kA k%%

Seasonal initialization - run once per season
R IR IR b b dh b b 4 dh b 2 dh b b S Sh b b 2h b b db dh b b Sh Sb b S dh b b dh Ib o dh Sh b 2 SR Ih b 2h Sh b S 2h b S S Sh b b 2h b I S Ih b b Sb Ib b 2 Sh b (b 4h i 4

ELSEIF (DYNAMIC .EQ. SEASINIT) THEN

Set sowing/start day of year for flowering model to start
Initialize progress toward flowering, SumFRD, & Day of First Flower
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SumFRD = 0.0
DAYL =
SRAD
TMAX
TMIN =
FDOY

NR1G

FRSTFL
GENID = "

|
]
=
=
n
[al

! Averages across 5 environments in datasets used to estimate model
! mean values of environmental variables.

DLm = 12.722559638877

Sradm = 18.2718980213904
Tmaxm = 27.4529030160428
Tminm = 16.1181873475936

! Limit maximum rate for a genotype based on QTLs, (FRMAX)

FRMAX = 0.02798564527544710 &
+ 0.00107126855594358 * QTL (1) &
+ 0.00124937987119220 * QTL(2) &
- 0.00035350501343249 * QTL(3) &
+ 0.00039945509894467 * QTL(4) &
+ 0.00007085168560867 * QTL(5) &
+ 0.00056306276150221 * QTL(6) &
- 0.00042854934463711 * QTL(7) &
- 0.00023509947596009 * QTL(8) &
- 0.00060905231969296 * QTL(9) &
- 0.00029702065347147 * QTL(10) &
+ 0.00063538481240068 * QTL(11) &
- 0.00023169840751149 * QTL(12)

| Ak A A A AR A AR A A AR A A A A A A A A A A A A AR A AR A AR A AR A AR AR A AR A A A A A A A A A A AR ARk A Ak Ak Ak Ak xk kK k%
| Ak A A A R A A AR A A A A A A A A A A A A A A A AR A AR A AR A AR A AR AR A AR A A A A A A A A A A A A A Ak A Ak Ak kA xk kK k%

! Daily Rate calculations
(BRI Sh I b b b e Sh Ib b 2h Sh b b dh I b 2b db b d Sh b b 2h Sb b 2 dh Ib b 2b Ih b b Sh I b 2h b b S Sh I b Sh b b 2R Sh I b 2h Sh b 2 dh b S 2b S b db Sh b S 2h S Y

ELSE IF (DYNAMIC .EQ. RATE) THEN

CALL YR DOY (YRPLT, YR, DOY)
DAP = MAX (0, TIMDIF (YRPLT, YRDOQY))

SRAD = WEATHER$SRAD
TMAX = WEATHER%TMAX
TMIN = WEATHERTMIN
DAYL = WEATHER%DAYL

! The dynamic gene-based mixed effects linear model, Bean

FR = 0.02351482064754700 &
+ 0.00057231114859053 * (TMAX - Tmaxm) &
+ 0.00052978909146124 * (TMIN - Tminm) &
- 0.00156356767055738 * (DAYL - DLm) &
- 0.00008502111815422 * (SRAD - Sradm) &
+ 0.00094127790142489 * QTL (1) &
+ 0.00124887042689091 * QTL(2) &
- 0.00060836426965787 * QTL(3) &
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+ + +

|
O OO O OO ODODODOOOOOoooOo

! Note that

.00023680275595848 * QTL (4) &
.00000567194207821 * QTL(5) &
.00052761690606345 * QTL(6) &
.00041145860322971 * QTL(7) &
.00021198302954652 * QTL(8) &
.00044260992328382 * QTL(9) &
.00025013760365754 * QTL(10) &
.00034338877075107 * QTL(11) &
.00015367693845455 * QTL(12) &
.00030157871435221 * QTL (1) * QTL(2) &
.00076644059984278 * (DAYL - DLm) * QTL(3) &
.00016245875627569 * (DAYL - DLm) * QTL(7) &
.00014595603452997 * (DAYL - DLm) * QTL(12) &
.00002408961229346 * (TMIN - Tminm) * QTL(2) &
.00008590422032661 * (TMIN - Tminm) * QTL(3) &
.00008540931051535 * (TMAX - Tmaxm) * QTL(5) &
.00003062728932614 * (SRAD - Sradm) * QTL(12)

one can replace the above mixed effects linear model with

! any function that computes each day's rate of progress toward
! first flowering

| Ak A A A A A A A A A A A A A A A A A A A A A A A A A AR A AR A AR A AR A AR A A A A A A A A A A A A AR AR A A Ak Ak Ak Ak xk kK k%

| Ak A A A A A A A AR A AR A A A A A A A A A A A A AR A A AR AR A A AR AR A AR A A A A A A A A A A A A A A A A Ak Ak Ak Ak r kK k%

Daily integration
(BRI b b b S b b e Sh b b 2h Sh b S dh b b 2b dh b b Sh b b 2h Sb b 2 dh Ib b 2b Ih b b Sh b b b b b SR Sh I S 2h e b 2R Ih b b 2h Sb b 2 Sh b b 2b Sb b db eh I S 2h S Y

ELSEIF

(DYNAMIC .EQ.

INTEGR) THEN

Compute time integral of development to pass back as cumulative

progress

toward development each day

In the equation for computing SumFRD, the time step is assumed

to be 1.0 d for this module

Limit rate

initial value=0.0.

(fixed)

of development to positive values;
When SumFRD first reaches 1.00,

flowering will occur

IF (FR < 1E-5) THEN
FR = 0.0
ENDIF
IF (FR > FRMAX) THEN
FR = FRMAX
ENDIF
SumFRD = SumFRD + FR*1.0
IF (SumFRD >= 1.0 .AND. FDOY < 1) THEN 'First flower occurs
FRSTFL = .TRUE.
FDOY = DAP + DOY
NR1G = DAS
ENDIF

| Ak A A A AR A A A A A A A A A A A A A A A A A A AR A AR A AR A AR A AR AR A AR AR A A A A A A A A AR A A A hA Ak Ak kA xk kK k%

| Ak A A A A A A A A A A A A A A A A AR A A A A A A A A AR A AR A AR A AR AR A A A A A A A A A A A A AR A A A A A Ak Ak Ak Ak xk kK k%

END OF DYNAMIC IF CONSTRUCT

| Ak A A A AR A A A A A A A A A A A A AR A A A A A AR A AR A AR A AR A AR A AR AR AR A A A A A A A A A A A Ak A Ak Ak Ak Ak xkk k)%

ENDIF
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RETURN
END ! DPLM

! DAP Number of days after planting (d).

! DAS Days after start of simulation (d).

! DAYL Day length on day of simulation (from sunrise to sunset) (hr).
! DLm Mean day length across all five sites, all genotypes.

! DOY Current day of simulation (d).

! DYNAMIC Module control wvariable.

! FDOY Number of days after planting when the first flower occurs
(d) .

! FRSTFL Flag to identify that the first flower occurs (true/false).

! GENID Identifier for reading in the input file '.gen'.

! NR1G Number of days after start of simulation when the first flower
! occurs (d).

! FR Daily rate of progress from planting to first flower
appearance

for selected genotype and environmental factors on the current
environment & day.

|

!

! FRMAX Maximum rate of progress toward first flower.

! SRAD Solar radiation (MJ/m2-d).

! Sradm Mean solar radiation transplanting to first flower across all
! genotypes, sites, years.

! SumFRD Current progress toward first flowering of FR.

! QTL (n) Alleles at QTL(1l) : QTL(n) in jth genotype.

! TIMDIF Integer function which calculates the number of days between

! two Julian dates (da).

! TMAX Maximum daily temperature (Celsius).

! Tmaxm Mean of maximum temperature from transplanting to first flower
! across all genotypes, sites, years.

! TMIN Minimum daily temperature (Celsius)

! Tminm Mean of minimum temperature from transplanting to first flower
! across all genotypes, sites, years.

! YR Year portion of date

! YRDOY Current day of simulation (YYYYDDD)

|

YRPLT Planting date (YYYYDDD)
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