
UNIVERSITY OF PASSO FUNDO
INSTITUTE OF EXACT SCIENCES AND GEOSCIENCES

GRADUATE PROGRAM IN APPLIED

COMPUTING

CROPTEST: Data-driven test
automation for crop modeling

systems

Marcio Nicolau

Passo Fundo

2018

UNIVERSITY OF PASSO FUNDO

INSTITUTE OF EXACT SCIENCES AND GEOSCIENCES

GRADUATE PROGRAM IN APPLIED COMPUTING

CROPTEST: DATA-DRIVEN
TEST AUTOMATION FOR CROP

MODELING SYSTEMS

Marcio Nicolau

Thesis submitted to the University of

Passo Fundo in partial fulfillment of the

requirements for the degree of Master in

Applied Computing.

Advisor: Prof. Dr. Willingthon Pavan

Coorientador: Prof. Dr. José Maurício Cunha Fernandes

Passo Fundo

2018

CIP – Cataloging in Publication

Cataloging: Librarian Jucelei Rodrigues Domingues - CRB 10/1569

 N639c Nicolau, Marcio
CROPTEST: data-driven test automation for crop

modeling systems / Marcio Nicolau. – 2018.
64 f. : il. color. ; 30 cm.

Advisor: Prof. Dr. Willingthon Pavan.
Co-advisor: Prof. Dr. José Maurício Cunha Fernandes.
Thesis (Master in Applied Computing) – University

of Passo Fundo, 2018.

1. Crop modeling. 2. Simulation methods 3. Data-

driven test. 4. Computer simulation. 5. Agricultural
informatics. I. Pavan, Willingthon, advisor. II. Fernandes,
José Maurício Cunha, co-advisor. III. Title.

CDU: 631:004

 004:631

ACKNOWLEDGMENTS

I would first like to thank my thesis advisor Prof. Dr. Willingthon Pavan of the Grad-
uate Program in Applied Computing at the University of Passo Fundo. The communication
to Prof. Pavan was always open whenever I ran into a trouble spot or had a question about
my research or writing. He consistently allowed this thesis to be my own work but steered
me in the right the direction whenever he thought I needed it.

I also would like to thank my thesis co-advisor Prof. Dr. José Maurício Cunha
Fernandes of the Graduate Program in Applied Computing at the University of Passo Fundo
and co-worker at Brazilian Agricultural Research Company (Embrapa) for all help, support,
suggestions, and discussions about DSSAT and Crop System Models.

In the same way I would like to acknowledge the main developers of DSSAT Foun-
dation for all their support, suggestions and ideas exchanged to improve the usability and
functionalities to the future users of CROPTEST. During all development time and at our reg-
ular meetings, I could better understand and realize the importance of crop model systems
for agriculture.

Many thanks to DSSAT Foundation for all financial support of my master at the
University of Passo Fundo and by sponsoring my participation on DSSAT official training
workshop at University of Georgia – Griffin Campus (USA).

Finally, I must express my very profound gratitude to my parents Osvaldo and Diva,
to my spouse Claudia and to my daughter Alice for providing me with unfailing support
and continuous encouragement throughout my years of study and through the process of
researching and writing this thesis. This accomplishment would not have been possible
without them.

Thank you.

Marcio Nicolau

CROPTEST: AUTOMAÇÃO DE TESTES COM BASE EM DADOS PARA
SISTEMAS DE MODELOS DE CULTURAS

RESUMO

O presente trabalho descreve o desenvolvimento de uma nova versão do CROPTEST que
aborda a problemática de comparar diferentes versões do DSSAT-CSM usando procedimen-
tos automatizados. A nova versão expande a anterior pelo uso de mais medidas estatísticas
aplicadas aos arquivos de saída, definido como o procedimento principal para comparação
com base em arquivos de entrada predefinidos - arquivos de execução em lote e configu-
rações de definição de experimentos - que geram arquivos com estrutura conhecidas de-
nominada metodologia de teste por dados (DDT), área da engenharia de software. O Agile
scrum foi adotado como metodologia de desenvolvimento. A nova interface do usuário e to-
das as funcionalidades foram projetadas para maximizar a experiência e a produtividade do
usuário. O código final foi escrito usando tecnologias modernas para desenvolvimento Web
as quais se mostraram úteis e responsivas ao desenvolvimento desktop usando bibliotecas
e frameworks combinados especificamente para este objetivo. Uma Interface de Programa-
ção de Aplicação (API - Application Programming Interface) foi projetada e implementada
para ser a fonte principal de recursos para extração de dados, análise e cálculos, é descrita
em detalhes e, além disto, é apresentado como configurar seu uso e anexá-la a uma Plata-
forma de Serviços (PaaS - Plataform as a Service) como Travis-CI ou Circle-CI, executando
um subconjunto de todos os testes de culturas existentes no DSSAT para verificar a con-
sistência e a melhoria do código proposto em relação à última versão estável armazenada
no GitHub. Esta versão Desktop possui procedimentos de instalação automáticos definidos
para os três principais sistemas operacionais - Windows, Linux e MacOS - o que torna o
CROPTEST uma ferramenta multi-plataforma para teste de modelos CSM.

Palavras-Chave: API, CROPTEST, DSSAT, Integração Contínua, Modelos de Crescimento
de Cultura, Testes Automatizados, Testes de Software baseado em Dados.

CROPTEST: DATA-DRIVEN TEST AUTOMATION FOR CROP
MODELING SYSTEMS

ABSTRACT

The present work describes the development of a new version of CROPTEST that address
the problem to compare different versions of DSSAT-CSM using automated procedures. The
new version expands the current one adding more statistical analysis applied to output files
and, using a methodology called data-driven test (DDT) from software engineering that use
a fixed set of input files and compare the output results – in this case, the batch files and
experiments settings. Agile scrum was adopted as the development methodology. The new
user interface and all operation pattern were designed to maximize the user experience
and improve their productivity. The final code was written using modern JavaScript web
technologies which evidence useful and responsive to desktop development, using libraries
and frameworks combined for this goal. The CROPTEST API, implemented and design
to be the core source for parsing and calculations procedures, is described in detail and it
showed how to set up a configuration to attached it to a PaaS (Platform as a Service) like
Travis-CI or Circle-CI. In this setup is possible to run a subset of the all crop tests to check the
consistency and improvement of the proposed code in relation with last stable version stored
on Github master branch. The desktop version was tested and have automatic installation
procedures already defined for the three major OS – Windows, Linux, and MacOS – making
the CROPTEST a multi-platform tool for test CSM models.

Keywords: API, Automated Tests, Continuous Integration, Crop System Models, CROPTEST,
Data-Driven Test, DSSAT.

LIST OF FIGURES

1 Snapshot of Analysis Form for experimental mode from the first CROPTEST
version [10]. 25

2 DDT approach. Schematic representation of test flow, figure adapted from
[3] . 26

3 DDT input file data example. This one was designed using a spreadsheet
program and provide a file in rectangular form, figure adapted from [3] . . . 27

4 Comparison between a development work-flow with and without auto-
mated continuous integration. Steps highlighted (Automation) are can-
didates to automation using local or on-line tools. 28

5 Main steps to build, test and deliver a new software version using GitHub
and Travis-CI. The interaction between PaaS services are based on pro-
gramable webhooks. 29

6 Summary type spreadsheet with data showing the most distinct variable
and statistics for HWAH, MDAT, SWXM. 30

7 Comparison type spreadsheet with data showing differences between vari-
ables (based on selected threshold) for each CSM model. 30

8 The CROPTEST work-flow showing the relationship between DSSAT-CSM,
User Interface an API to run, parse, calculate and show the statistics for
the user. 42

9 Snapshot of main window operations for the new CROPTEST. In detail,
the Run step, that permits the user to run CSM models from User Inter-
face and observe the results and running status. 44

10 Snapshot of main window operations for the new CROPTEST. In detail,
the Run step, showing the parse and load content of Batch file inside
“Batch File Content” panel. 45

11 Snapshot of main window operations for the new CROPTEST. In detail,
the Run step, showing the parse and load content of Batch file inside
“Batch File Content” panel. 45

12 CROPTEST in detail, the Run step, showing the parse and load content
of Warningfile inside “Warning/Error Output” panel. 46

13 Snapshot of main window operations for the new CROPTEST. In detail,
the Analysis step, that permits the analyze the CSM models output for
summary and evaluate files. Image details for summary output file. 47

14 In detail, the Analysis step, that permits the analyze the CSM evaluate
output files. Each column shows the statistics for both models side-by-
side to make the process of decision easier. 48

15 Workflow and related key steps necessary to test a new CSM version
hosted on GitHub with environment allocated on Travis-CI. 55

16 The CROPTEST API work-flow showing the relationship between CSM
output files, parser procedure, statistics calculations and results output to
the user and for shell interaction (CI Platform). 57

LIST OF TABLES

1 Summary of the key Web technologies and their inter-relationship used to
develop the new CROPTEST Desktop Application. 41

2 CROPTEST Desktop Application basic folder structure. Some settings
could be adjusted and persisted between executions, others are fixed and
defined on first run. The main folder is defined CTWork from last DSSAT
version installed on the user computer. 43

3 CROPTEST partial output (min, avg and max) of relative differences be-
tween CSM versions 4.6 and 4.7. A subset of all summary output vari-
ables are randomly selected for crops Cassava, Maize, Peanut, Potato,
Rice, Soybean and Wheat. 49

LIST OF ABBREVIATIONS

DDT. – Data-driven Tests

CSM. – Crop System Models

DSSAT. – Decision Support System for Agrotechnology Transfer

APSIM. – Agricultural Production Systems Simulator

FORTRAN. – Formula Translation

PaaS. – Platform as a Service

API. – Application Programming Interface

IBSNAT. – International Benchmark Sites Network for Agrotechnology Transfer

HWAH. – Harvest weight at harvest (kg/ha)

MDAT. – Maturity date (days or date)

SWXM. – Extractable water at maturity (mm)

CI. – Continuous Integration

OSS. – Open Source Software

SRAD. – Solar Radiation (MJ/m2/d)

AI. – Agreement Index

ME. – Model Efficiency

MAE. – Mean Absolute Error

RMSE. – Root Mean Squared Error

nRMSE. – Normalized Root Mean Squared Error

JSON. – JavaScript Object Notation

TDD. – Test-Driven Development

CONTENTS

1 INTRODUCTION . 19

2 BACKGROUND . 23

2.1 DSSAT . 23

2.2 CROPTEST . 23

2.3 QUALITY IN SOFTWARE DEVELOPMENT . 24

2.3.1 Data-driven test . 26

2.3.2 Agile Scrum . 27

2.4 CONTINUOUS INTEGRATION . 27

2.5 STATISTICAL METHODOLOGIES . 29

2.6 TOOLS AND TECHNOLOGIES . 32

3 CROPTEST DESKTOP . 37

3.0.1 Introduction . 37

3.0.2 Background . 39

3.0.3 Material and Methods . 40

3.0.4 Results and Discussion . 43

3.0.5 Conclusions . 50

4 CROPTEST API . 51

4.0.1 Introduction . 51

4.0.2 Background . 52

4.0.3 Material and Methods . 53

4.0.4 Results and Discussions . 55

4.0.5 Conclusions . 58

5 CONCLUSIONS AND FUTURE WORKS . 59

REFERENCES . 61

19

1. INTRODUCTION

The task to create and maintain a software requires time, resources and effort from
a development team and, based on all investment it is necessary to have some way to assure
the quality and usability of the resultant software that is delivered to customers.

Use of methods and procedures during software development that guarantees the
minimum set of quality for the user is a desired requirement for all company or development
team. From software engineering, the most common method to do test avoiding wrong
operations results and calculations, and improving the product quality is known as a unit
test [1, 2].

Unit test implements localized checkout at the smaller part of the systems – func-
tions or procedures – and, in some cases, could stack them together. As a result, if the
smaller parts passed in the test and the whole system shows some problems or wrong
behavior, the problems could be delegated to an aggregation process.

Even though this method has been working well in a variety of software and sys-
tems, some of them do not obtain all benefits of a unit test as main methodology, especially
ones that were developed for legacy systems.

An alternative solution is a use of Data-driven tests (DDT), a software engineering
procedure that use external data to compare output results and measure the quality and
performance of software code [3, 4].

A case of complex and legacy system development could be found in Crop System
Models (CSM) that is used from a long time to simulate the dynamic and interaction between
plant growing components (soil-atmosphere-water-nutrients).

Those dynamic simulation models are used to evaluate and predict yield from
crops, especially ones with economic and food security influence - like maize, soybean,
and wheat – just as few examples. In this context, CSM software like DSSAT [5, 6] and,
APSIM [7] is an example of complexity levels that this type of software could archive.

The DDT evidently provided a good solution for the problem of evaluating CSM
software quality in the scenario that already has multiple sets of data input, simulation con-
figurations, and field experiments data for each crop. Indeed, this rich test set generates
output files from simulation, and these could be the main part of the comparison procedure.

Besides all complexity that is common and intrinsic to CSM, another important point
to consider is the computer language or set of them, used to develop the whole system.
Some languages, like FORTRAN, shown more difficult to implement software test, when
this one only centered on the unit test.

The choice and use of FORTRAN as main development language earlier could
now cause some problem to adopt modern techniques for testing procedures and quality

20

software assurance. On DSSAT-CSM case, the necessary effort and time to implement
this for all modules and procedures could be prohibitive, the actual complexity and inter-
relationship between core modules and crop systems could induce a low convergence and
overall quality [8], and there was still a need for full-scale acceptance testing [9].

As a reference, the CSM version 4.7 from DSSAT provides 42 different crop models
with the possibility to create scenarios and crop rotation simulation for several years in a row.
In this context, the development, maintenance, and test become even more crucial and time-
consuming task for the DSSAT development team.

There are two main problems to face at this point, how to proceed with test and
quality software assurance in a suite of models that was not planned to accommodate this
kind of procedure without changing the main code. Another is which will be the best practice
that could permit the design of an automated testing system which could cover most of the
core modules and integrated crop systems with low cost and minor time effort to implement?

As an attempt to solve those problems, DSSAT development team create a soft-
ware with a predefined protocol to test a reduced and fixed number of model output files
and observe the relative differences archived between two CSM versions, a stable and next
release one. This tool, called CROPTEST, was developed using a language which now does
not have vendor support (since 2016) and, in the other hand, offers a minimal set of options
to the developer test the quality of the software between versions.

This first CROPTEST version helps to solve an immediate problem related to quality
software test, but the evolution and growing complexity of CSM demanded the development
of a new version with improved functionalities and desired performance, like one related to
the possibility to run on multiplatform and work with more files and work variables.

The main objective of this work is to create a new CROPTEST version, running
both in desktop and in online infrastructures nominated Platform as a Service (PaaS), using
DDT methodologies and modern web development technologies, libraries and frameworks
for best user experience and usability.

This CROPTEST is being utilized as a testing system by DSSAT development team
to improve the CSM functionalities, comparing the results between releases versions and for
development and incorporation of new crop models. Other efforts are related to prototyping
and implementation of a generic parser to be used as an API for both Desktop and PaaS
versions, that cover all types of tests and comparison for more model output files.

To present all steps used to develop the present work, this document is divided in
chapters and each one detail the main phases as follow, in Chapter 2, a background of meth-
ods, technologies, tools, and literature review is presented. In Chapter 3, the toolset used
for development and a sample of the Desktop interface usability are presented. In addition,
the improvements and new functionalities of the first CROPTEST version are detailed.

21

Chapter 4, details the development of the API used for parsing and comparison
procedure for both Desktop and PaaS versions. Also, a minimal PaaS setup is presented
to the user. Chapter 5, present the summarization of the steps and lessons learned during
the development of this new CROPTEST version, also presents some future works for the
project.

22

23

2. BACKGROUND

This chapter defines the concepts, methods, and technologies investigated during
the development of the new version of CROPTEST. A literature review of related works and
necessary knowledge used as a base foundation for this propose developments are detailed
in the following sections.

2.1 DSSAT

The DSSAT started as an international network of cooperating between scientists
to facilitate the application and use of crop models in agronomic research [5]. In the early
development, the main goal was integrated knowledge soil, climate, crops, and management
for a better decision; this network was called IBSNAT [5].

In 2003, DSSAT incorporated 16 different crops [6] and a common layer of informa-
tion shared by all crops, composed by a soil module, a crop template, a weather module. As
well, it was developed as a module to evaluate the water and light competition among trilogy
soil, plant and atmosphere.

In that same year, a structural change occurred to facilitate maintenance and allow
easy replacement or addition of modules and crops, adjusting a culture model module and
a species input file; this change generated the CSM for the new DSSAT, which is now called
DSSAT-CSM [6].

The DSSAT-CSM is all writing in FORTRAN language that works mainly with files to
transfer information between CSM modules. It is a fact that FORTRAN is the lingua franca
for scientific codification in works that extensively use mathematical formulation, like crop
model system.

In 2017, the CSM version 4.7 from DSSAT offer to the users 42 crop models. In
this context, the development, maintenance, and test become even more crucial and time-
consuming task for the main team responsible for main DSSAT code.

2.2 CROPTEST

The DSSAT Model Comparison Utility (CropTest) was developed with the purpose
to compare the output of two versions of a DSSAT crop model, using data from the summary
files. The first version was designed for users with DSSAT models familiarity and knowledge
to run them from batch mode simulations [10].

24

To develop this version, the Visual Basic 6.0 from Microsoft Corporation was used
as main language and development environment. This CropTest has been able to make calls
to the DSSAT crop model binaries. The main idea was to measure the relative difference
inside summary output files from a typical DSSAT generate by two sets of source codes
(stable and development).

The main characteristics of this version are related to the use of a fixed structure
to enable to run; the comparison is conducted using a templated spreadsheet file and the
composed batch files used to get the output from models, with a possibility to be generated
manually or using the proper DSSAT interface.

The comparison could be carried out selecting from two analysis mode: (a) Experi-
ment and (b) Sensitivity Analysis. Each one with different meanings and specific options [10].
In experiment mode, four simulation options are available: (i) Model 1 only, (ii) Model 2 only,
(iii) Import results and compare and, (iv) Run both models, import and analyze) are available.

Sensitivity mode allows an additional option when the sensitivity analysis was setup
on analysis mode. All simulation results and analysis from experimental mode are presented
inside one spreadsheet, containing summary and comparison information alongside with
data from models (1 and 2) output.

The user could define a threshold value (2% default) used as a cut point for high-
lighting differences between models. Any differences between the two models more than this
threshold are highlighted on comparison and summary. All the dates in comparison have a
fixed threshold of zero. Any change in the threshold to evaluate the models in a different
context or situation, did not automatically update the resulting spreadsheet, compelling the
user to run the comparison procedure again.

The user interface is the same used by main DSSAT-CSM (Figure 1), and it was
designed to run as an add-on or plug-in for main DSSAT interface. It is necessary to both
versions of codes installed as a binary file and, proceed with setting for maximum threshold
accepted and source path for binary input and output from models. Both models run with
the same input files [10].

For the comparison purpose between the models, this first version uses a small
set of statistics to support the comparison. The average and maximum changes in HWAH,
MDAT and SWXM; also it reports the maximum deviation between models, describing the
variable, maximum value, observed values from model 1 and 2, simulation run an experiment
(file X) among other informations [10].

2.3 QUALITY IN SOFTWARE DEVELOPMENT

Developing a software with quality means to define a set of procedures for use by
organizations or community group to ensure that a software will meet its quality goals at the

25

Figure 1: Snapshot of Analysis Form for experimental mode from the first CROPTEST ver-
sion [10].

best value to the customer, and to continually improve the organization’s ability to produce
software products in the future.

Tsai et al [1] advocate that when software testing is performed at the end of the cod-
ing phase, the quality could be compromised because of the due date, and so, verification
and validation (i.e. software test) should be performed during all development phases.

In a certain way, the development and test should be inseparable and intercon-
nected steps to support a better software delivery. However, in some cases, programmers
without computer science background carry out the development and the most common
tests applied in this context are related to the correctness of mathematical formulation and
output results, based on some reference dataset recorded from the scientific or observa-
tional experiment.

Wilson et al [11] present an interesting view about software development by scien-
tists and how they should improve the quality of the software used in science. While most
scientists are careful to validate their laboratory and field equipment, most do not know how
reliable their software is.

26

Unfortunately, the use of software engineering methods for quality software tests
applied specifically to CSM is not well described and to the best of author’s knowledge and
thorough search of the relevant literature yielded no related work describing this approach.

2.3.1 Data-driven test

One way for testing software could be the use of scripts, the most common use of
this approach is to put the input data together with code, and this approach could generate
problems when those data need changes.

On the other side, when the software pass through structural changes a new ver-
sion of all scripts (code and data) must be produced, and this scenario create a difficult
generalization of test process structure (recycling code).

Figure 2: DDT approach. Schematic representation of test flow, figure adapted from [3]

A possibility to solve this kind of problem is to use external data sources as a
source for test execution [3]. This is the core of DDT as illustrated in Figure 2. An advantage
to using this form of software testing is that the data could change easily and can evolve as
the software increases its functionalities.

Another advantage is that any person with knowledge from crop could generate a
new dataset for the test, without any programming skills. It is often in tabular format and
edited in spreadsheet programs, as seen in Figure 3. In resume, the data-driven approach
is the key for ease-of-use in large-scale test automation.

27

Figure 3: DDT input file data example. This one was designed using a spreadsheet program
and provide a file in rectangular form, figure adapted from [3]

2.3.2 Agile Scrum

The Agile Scrum [12] methodology advises that all requests for resources, user
requirements, bug reports and other issues be captured and kept in a prioritized backlog.
Each scrum team has a backlog product owner responsible for managing and prioritizing
deliveries for each cycle. The project manager works closely with backlogs owners to provide
management and prioritization of global products.

The development performs in time-box rounds, typically two to three weeks in du-
ration. Within each round, a management team prioritizes and agree to the items of the
backlog of interest for that round.

Once scoped and agreed, the team is free to complete the work in the best way. At
the end of each round, the scrum team shows progress in the use cases and requirements
articulated by stakeholders.

This way of development generally delivers the most important features early to
the client, and this maximizes the returned value each development round and could be
affordable inclusive for small development team [13].

2.4 CONTINUOUS INTEGRATION

Currently the software development, in most cases, goes across similar steps re-
lated to design, implementation, build and test. Fortunately, some of those steps could be
automated using tools and online services (PaaS) to help the developer (individual or team)
to have more time to do what is important – write better software.

28

Figure 4: Comparison between a development work-flow with and without automated con-
tinuous integration. Steps highlighted (Automation) are candidates to automation using local
or on-line tools.

Similarly, this new work-flow development using continuous integration associated
with continuous delivery could fill the gap between software development and the access for
this software by those users as soon as possible and with more quality [14].

The automation could happen on the highlighted steps from Figure 4. Those ones
could be setup to run using script files for local settings or with configuration files and web-
hooks for online.

The Continuous Integration (CI) is the most common step of the software life-cycle
is the build release. In fact, CI tools improve the management of the process substantially
and accelerate the time between development and test process.

Fitzgerald et al [14], describe that using CI/CD the developer could be closer from
costumers without delays from development and test to deliver the solution, this affirma-
tive is valid for all types of development and delivery, including web-pages, Internet portals,
Desktop and Mobile Applications.

Travis CI [15] is a distributed continuous integration hosted system service used to
build and test software, especially ones hosted on GitHub [16] platform. In general, open
source projects may run with no charge fee.

Along with the existence of other vendors offering the same type of integration and
services like Visual Studio Team Service1, Circle-CI2, GitLab3 and AppVeyor4; the author
choice for Travis-CI and GitHub are related to the use of a student development pack5 offered

1https://www.visualstudio.com/pt-br/team-services/
2https://circleci.com
3https://about.gitlab.com
4https://www.appveyor.com
5https://education.github.com/pack

29

Figure 5: Main steps to build, test and deliver a new software version using GitHub and
Travis-CI. The interaction between PaaS services are based on programable webhooks.

by GitHub that includes full access to private repositories and private build services from
Travis-CI valid during this project development.

The key steps related to the overall process integration is presented on Figure 5.
The procedure is cycled and is triggered on specific check-points from development on de-
veloper own computer with updates carried out by webhooks and scripts from both GitHub
and Travis-CI.

Deshpande and Riehle [17] evaluates the adoption of CI of agile software devel-
opment on Open Source Software (OSS), and as a result, they present that open source
software community still does not change their CI practices and neither influenced OSS
developers at all.

2.5 STATISTICAL METHODOLOGIES

An important part of DDT method for the new version is to find mathematical for-
mulations that endorse the gain in performance when comparing models. One common way
to prove scientific evidence based on data is related to the application of statistical method-
ology.

The intent of this section is to expose the statistical formulation used by both ver-
sions of CROPTEST to compare the results between CSM versions. Alongside with the
main uses for each statistics, the formulation and references are provided when necessary,
and this decision is based on common sense knowledge in the scientific community.

30

Analysis on Version 1

The CROPTEST v1 uses two types of analysis based on data from summary output
file for each model. The summary type (Figure 6) contains a one-line summary of compar-
isons done. The most recent comparison is summarized on the last line of the list, acting
like a historic queue from previous comparison summary data [10].

Figure 6: Summary type spreadsheet with data showing the most distinct variable and statis-
tics for HWAH, MDAT, SWXM.

On this type, the following statistical information are provided: (a) average and
maximum changes in variables HWAH, MDAT and SWXM; (b) Maximum Deviation between
Models, that present the worst relative comparison between the models.

The second type (Figure 7) contains the relative comparison of results between
the models. Any relative difference more than the threshold, as specified by the user, is
highlighted so that significant differences between models can be seen at a glance.

Figure 7: Comparison type spreadsheet with data showing differences between variables
(based on selected threshold) for each CSM model.

Any absolute difference in dates is highlighted, regardless of threshold. Maximum
values for each row and column are reported, along with the variable name and raw data
values that produced the maximum relative difference for each simulation [10].

This version also presents the sensitivity analysis mode for a specific type of crops
like chickpea, drybean, maize, peanut, rice, soybean and tomato. This kind of analysis

31

includes graphical reports for temperature offset, fixed temperature, fixed SRAD, fixed CO2,
rainfall multiplier, daylength offset and planting date.

Sensitivity analyses are performed to reveal the response to yield of various en-
vironmental, management or other stimuli. A pre-defined set of input data files have been
prepared for each crop for use in sensitivity analysis without possibility to expand or modify
these data sets [10].

Analysis on Version 2

The new version (v2) extend the number of statistics used to measure the rela-
tive performance between CSM models. Also, it works now on two types of output files –
summary and evaluate – from simulations to archive this goal.

For the summary output file, the statistics used for summarization and comparison
between crop models outputs are the detailed below [18]:

• Number of Outliers: Calculate the number of experiments that have abnormal or
extreme value. Correspond to approximately 95% IC for the median. Formula: 1.5×
IQR+[−Q1,+Q3]6.

• Mean: Calculate the average value for numeric column data. Formula: x̄ = ∑x/n.

• Maximum: Return the maximum value for numeric column data. Formula: max(x).

• Minimum: Return the minimum value for numeric column data. Formula: min(x).

For the evaluate output file, another set of statistics are used for comparison be-
tween models which are related to model performance and related measures [19]. A brief
explanation alongside with the mathematical formulation are presented below:

• Agreement Index (AI): Is a measure of model accuracy, evaluating a cross-comparisons
between simulated and observed data. Formula: 1−∑(yi − xi)

2/∑(|yi − x̄|+ |xi − ȳ|)2.

• Model Efficiency (ME): Measure of the predictive power of a simulated model. Formula:
1−∑(yi − xi)

2/∑(xi − x̄)2.

• Mean Absolute Error (MAE): Measure of difference between two continuous vari-
ables. Formula: ∑ |yi − xi|/n.

• Root MSE (RMSE): Measure of how spread out the residuals are. It tells you how
concentrated the data is around the line of best fit. Represent the standard deviation

of the prediction errors. Formula:
√

∑(yi − xi)
2 /n.

6IQR: Inter Quartile Range / Q1, Q3: Quantiles 1 (25%) and 3 (75%)

32

• Normalized Root MSE (nRMSE): Express percent of the variation of the standard
deviation of the prediction errors around the mean. Formula: RMSE/x̄×100.

• R Squared (R2): “Goodness-of-fit” for linear models. Measure the linear association

(adherence) between x and y. Formula:
(

∑[(xi−x̄)(yi−ȳ)]√
∑(xi−x̄)∑(yi−ȳ)

)2

.

2.6 TOOLS AND TECHNOLOGIES

This section lists the key tools and technologies used to develop the Desktop ver-
sion and the API for the new CROPTEST. The selection of technologies is guided by three
principles: (a) facility provided by the tools related which each one them to develop a soft-
ware with high quality standard and that permits the setup for test the software during all
phases of the development; (b) the development environment and setup make it easy to
use with CI/CD services, and (c) the software maintenance could archive long term support,
preferably via OSS developer community.

The developer community established around web technologies is one of the most
engaged and supportive among others. Also, the applications of this kind of development
expanded from web environment and now permit development for growing number of sce-
narios like web, mobile, desktop and edge devices. Based on former experience from the
author and the rich set of tools, methods, and technologies, the natural choice is Javascript.

For the API tools, and related with the context to read, treat and analyze numerical
data, the most popular choices could be Python7 or R8. Consequently, using the same prin-
ciples related to desktop choice and, once more, based on previous author expertise, the
natural direction for this type of development is the R software.

CROPTEST Desktop

Based on arguments already exposed and, associated with the necessity to run this
new Desktop version on multiple platforms, the use of modern web technologies presents a
potential increase in productivity, usability and long-term maintenance.

The information related to each tool or technology and their inter-relationship, when
this occurs, is presented as follows:

• Electron: Is an open source library developed by GitHub for building cross-platform
desktop applications with HTML, CSS, and JavaScript. Electron accomplishes this by
combining Chromium and Node.js into a single runtime and apps can be packaged for

7https://www.python.org
8https://www.r-project.org

33

Mac, Windows, and Linux. It began in 2013 as the framework on which Atom, GitHub’s
hackable text editor, would be built. The two were open sourced in the Spring of 2014.

Electron permits the development of Desktop Application using modern web technolo-
gies incapsulating it inside a Chromium environment but with access to computer re-
sources like disk and memory. [20]. Source: https://electronjs.org/.

• Webpack: At core it is a static module bundler for modern JavaScript applications.
When processes an application, it internally builds a dependency graph which maps
every module your project needs and generates one or more bundles. It permits the
use of loaders and plugins to extend the core functionalities, like the addition of the hot
module replacement, transpilling (plugin) and splitting generated output. It is also capa-
ble to bundle and minify application for distribution. Source: https://webpack.github.io/.

• BabelJS: It is a JavaScript compiler that enable developers to use and implement
Javascript code using next generation standard (with new functionalities) and deploy
them to use with standard that actual browsers could understand and execute. As
example, it could be used to covert from draft ECMAScript version to the one that all
modern Web Browser could execute. Source: https://babeljs.io/.

• Node.js: A JavaScript runtime built on Chrome’s V8 JavaScript engine. Node.js uses
an event-driven, non-blocking I/O model that makes it lightweight and efficient. As
an asynchronous event driven JavaScript runtime, Node is designed to build scalable
network applications. It is similar in design to, and influenced by, systems like Ruby’s
Event Machine or Python’s Twisted. It takes the event model a bit further. It presents
an event loop as a runtime construct instead of as a library. In other systems there is
always a blocking call to start the event-loop [21]. Source: https://nodejs.org/en/.

• Semantic-UI: Semantic UI React provides the JavaScript for your components. Also
includes a stylesheet to provide the styling for your components. This is the typical
pattern for component frameworks, such as Semantic UI or Bootstrap. It is used by
companies like Amazon, Netflix and Microsoft to create and deliver their products. It
is Javascript User Interface Framework based on Semantic-UI CSS library. Source:
https://react.semantic-ui.com/.

• ReactJS: Is a declarative, component-based JavaScript library used for building user
interfaces [22]. Declarative views make your code more predictable and easier to
debug. Build encapsulated components that manage their own state, then compose
them to make complex UIs. Since component logic is written in JavaScript instead
of templates, you can easily pass rich data through your app and keep state out of
the DOM. React makes it painless to create interactive UIs. Design simple views for
each state in your application, and React will efficiently update and render just the right
components when your data changes. Source: https://reactjs.org/.

34

• Jest: Is a JavaScript Testing Framework with the main philosophy related to offer an
integrated “zero-configuration” experience, providing ready-to-use tools, to the develop
end up writing more tests, which in turn results in more stable and healthy code bases.
Fast interactive watch mode runs only test files related to changed files and is optimized
to give signal quickly. A complete and ready to set-up JavaScript testing solution that
works out of the box for any React project. At the end, Jest is a Unit Test framework
for Javascript code. Source: https://facebook.github.io/jest/.

• electron-builder: A complete solution to package and build a ready for distribution
Electron app for macOS, Windows and Linux with “auto update” support out of the box.
It provides build version management, possibility to publishing artifacts to GitHub Re-
leases, Amazon S3, DigitalOcean Spaces and Bintray. Support (compile for release-
time on the fly on build) and Docker images to build Electron app for Linux or Windows
on any platform. It is proficient to package and build an Electron application ready for
distribution. Source: https://github.com/electron-userland/electron-builder.

CROPTEST API

In addition of the arguments presented earlier, another key point that contributed
to the choice of the R software as the main language for API development is since the main
DSSAT deployment already offers to the user an R installation. This eliminates the necessity
to install additional software or language to use by Desktop API.

The information related to each package is presented as follows:

• Readr [23]: Read Rectangular Text Data. The goal is to provide a fast and friendly
way to read rectangular data (like ’csv’, ’tsv’, and ’fwf’). It is designed to flexibly parse
many types of data found in the wild, while still cleanly failing when data unexpectedly
changes. Used for parsing summary and evaluate output files with support of flexible
rules and meta-heuristics.

• Dplyr [24]: A Grammar of Data Manipulation. A fast, consistent tool for working with
data frame like objects, both in memory and out of memory. This grammar provides
a consistent set of verbs that help to solve the most common data manipulation chal-
lenges. It is designed to abstract over how the data is stored, meaning as well as
working with local data frames or with remote database tables, using exactly the same
R code. Used for pre-processing, cleanning and calculations of all statistics and com-
parison procedures between CSM models.

• Jsonlite [25]: A Robust, High Performance JSON Parser and Generator for R. A fast
JSON parser and generator optimized for statistical data and the web. This package

35

offers flexible, robust, high performance tools for working with JSON in R and is par-
ticularly powerful for building pipelines and interacting with a web API. Used for export
data from R API to the Desktop application via API functions.

• Jug [26]: A Simple Web Framework for R. It is a web framework aimed at easily building
APIs. It is mostly aimed at exposing R functions, models and visualizations to third-
parties by way of http requests. Used for exposing R API functions responsible by get
input parameters from Desktop application interface and send results from calculation
back.

36

37

3. CROPTEST DESKTOP

Abstract

A new version of CROPTEST that address the problem of compare different ver-
sions of DSSAT-CSM suite using automated procedures. In the first version, a restricted
number of files are used for comparison, and this approach decreases the chance to detect
a real change in results from all system based on changes in FORTRAN source code. The
new version expand, the current number of output files used to proceed with comparison and
are based on data-driven test (DDT) methodology; uses agile scrum development technics
to improve the quality and the return value for DSSAT foundation every new release. A light
version of this testing procedure could be setup to run directly on a online PaaS providing a
broader response to the development team working on proposed model which would main-
tains the required quality expected for DSSAT-CSM code. In addition to a generic parser for
DSSAT output files, a desktop application using Web modern technologies was designed
and developed for a better user experience and productivity.

Keywords

crop modeling, data-driven test, automated tests, continuous integration

3.0.1 Introduction

A software development represents an important rule and carry out a big effort,
especially to guarantee that all promises and functionalities will be delivered as expected. A
software development could and, generally evolves, a few number of peoples called devel-
oper. But, besides the context where a specialist could write a computer program – like a
scientist developing a novel tool to help others to use his new scientific or live improvement
– one area of computer science called software engineering is responsible for the study, im-
plementation, and dissemination of good standards for software development and delivery.

The most common tools, methodologies, and books are designed for help and
improvement of commercial software. Scientists have been developing tools and software
with methodologies for quality based on adaptations and adjust to those used in commercial
development.

The scientific software presents special challenges for testing, most because cul-
tural differences between scientist developers and software engineers, along with the char-
acteristics of the scientific software make testing more difficult [27]. This context is now

38

changing, in part from the growing number of the scientific software that is coming to solve
problems in the age of data and information [28].

That scenario is valid to crop modeling systems that is an intersection area between
mathematics, biology, and agronomy. Most of the development is based on the training of
scientists that have a basic to good knowledge of computer languages like FORTRAN and
C.

FORTRAN is the lingua franca of modeling biological, life and engineering systems,
must because the close relationship with the mathematical formulas but, from a testing soft-
ware point of view, the language presents some limitations.

Specific tools have been developed for this approach, based specifically on FOR-
TRAN like FRUIT [29], pFunit [30] and other adaptations, all them using unit test methodol-
ogy.

A unit test is designed to test a small part of the code and verify if that portion
produces the expected result based on assertions. Certainly, this is the most known and
used method for testing software. Although, sometimes this approach does not fit in one
project structure, for example, if the project already have many years of development and
now it is necessary to implement some kind of software test.

Other methods and procedures present the developer with alternatives to the unit
test pattern, for those we could cite test-driven development and DDT. The TDD9 proposes
that first and foremost step must be to write the use tests case and, after that, develop a
piece of software that satisfy or pass this test.

The DDT, on the other hand, uses a predefined set of input data that runs through
the software and generate a known and valid output. The big change here is thinking the
improvement of the software without the necessity of changing the code or write tests for
each individual piece of the process. Unlike from unit test, that works from small parts and,
hierarchically test larger parts, or believes that if the small parts work, the problem or failed
output is due to joint or aggregations inability.

With DDT, the runs at the interaction parts of the software or system: the user
input and the results output. This approach considers all parts of the entire system, and
the measures of improvements are related to archive a better output – for the crop model
systems, this is observed an output that fit well the experiment output. For crop model
systems, we believe that this is the best options.

The CROPTEST is a tool designed for quality software test of CSM, the main idea
is to measure the relative differences from the summary and evaluates output files from
DSSAT generate by two sets of source codes (stable and development).

The first version of CROPTEST was created by DSSAT development team works
with a predefined protocol to test a reduced and fixed number of model output files and ob-

9TDD: Test-Driven Development

39

serve the relative differences archived between two CSM versions. It is called CROPTEST
and was developed using a programming language (Microsoft Visual Basic 6.0) without ven-
dor support since 2016 [10].

This first version helps to solve an immediate problem related to quality software
test, but the evolution and growing complexity of CSM demanded the development of a
new version with improved functionalities and desired performance, like one related to the
possibility to run on multiplatform and work with more files and work variables.

The main objective of this work is to create a new CROPTEST version to run in
both desktop and online infrastructures nominated Platform as a Service (PaaS), using DDT
methodologies and modern web development technologies, libraries and frameworks for
best user experience and usability.

The model comparison and efficiency are carried out using evaluation measures
and statistics common to model fitting context. Yang et al [19] review several statistical
measures that could be used, for crop models evaluation. From this work we selected some
indexes based on applicability and type of information used for classification of a better
model.

Unfortunately, the use of software engineering methods for quality software tests
applied specifically to CSM is not well described and to the best of author’s knowledge and
thorough search of the relevant literature yielded no related work describing this approach.

Following this introduction, Section 3.0.2 presents a brief background summary of
the CROPTEST. Section 3.0.3 explain relationship between all those tools, methods and
technologies. Section 3.0.4 results and discussion with include the new interfaces, the step
procedures to training a new user for operation and some results from this operation. The
final remarks and future works are presented in Section 3.0.5.

3.0.2 Background

The CROPTEST v1 was developed using Microsoft Visual Basic 6.0 by DSSAT
development team. The main idea is to measure the difference between the summary and
evaluates output files generate by two sets of CSM source codes (stable and development).
All comparison result was stored is a spreadsheet file that shows the difference above a
threshold using a semaphore system color (green-yellow-red) [10].

This version used the same user interface from DSSAT (Figure 1) and they were
designed to run as an add-on or plugin for the main interface. It is necessary for both
versions of codes installed as a binary file and, proceed with setting for maximum threshold
accepted and source path for binary input and output from models. Both models run with
the same input files.

40

Based on this description and further on the requirements for the new version, a
plan with a review of technologies, tools, and methods for development of this new version
was started. Ahead this period, a setup based on agile scrum development, using modern
web technologies to design and develop the new desktop version using continuous integra-
tion tools and settings was the start point for present development.

3.0.3 Material and Methods

After Agile Manifesto [12] come to live and advocate about twelve principles that
should coordinate the software development to deliver a piece of codes that is really dy-
namic in their deep essence. Other methods for software was been aggregated to the daily
development routine.

One of them is called Agile Scrum [31] that was chooses for this project context,
based on the necessity of development in strong interaction with the DSSAT Foundation
(Product Owner) necessities for this tool and, to delivery intermediate versions with possi-
bility to use and test, collect new directives and make those ones in functionalities for the
CROPTEST. The development circle was defined in two weeks (Sprint) and the advisors
(Scrum Master) suggestions are designed to deliver what was proposed.

All new suggestions and a bug report were filled on Github to make possible to
evaluate the development coverage related to final project goals. The Github Project [16]
was used to the management of the backlog and the issues during the sprint.

The interface requirements of the new CROPTEST are related to the necessity to
run natively on the three major O.S. with the same interface, usability, and functionalities.
Based on the resources restriction – only one developer, the native development for each
O.S. was automatically rejected.

Among other options, the web development certainly could archive these require-
ments, but it must run from a web browser, and, the tool needed to run in own self-contained
environment because of the heavy access to O.S. filesystem.

After analyzing how to solve this kind of problem, it was found a project started in
2013 internally at Github and now known as Electron [20]. It is a combination of Chromium10

- the engine of Google Chrome Web Browser - and Node.js [21], designed to build a cross-
platform desktop application using modern Web technologies.

Today, companies like Microsoft (Skype11), Github (Github Desktop12), Facebook
(WhatsApp13) and Slack (Slack Client14) are already using Electron to build their own desk-

10Chromium - http://www.chromium.org/Home
11https://electronjs.org/apps/skype
12https://electronjs.org/apps/github-desktop
13https://electronjs.org/apps/whatsapp
14https://www.cyberscoop.com/electron-vulnerability-skype-slack/

41

top application. Any Javascript library or framework could be used to compose the user
interface application, the most common one is a Facebook framework called ReactJS [22]
that uses reactive programming paradigm.

To develop the new version of CROPTEST Desktop, some Web technologies were
used, among them Electron, Webpack, BabelJS, Node.JS, Semantic-UI, ReactJS, Jest and
other React packages or frameworks with the recommended case of use besides the source
address (Table 1).

The selection of these technologies was guided by the provision that related tools
provide to software development with high-quality standard, that permits the setup for test
the software during all phases of the development and, make it easy to use with CI/CD15

services. Also important is the long time support for software maintenance that could be
archived via OSS16 developer community.

The developer community established around web technologies is one of the most
engaged and supportive among others and, also based on former experience from the au-
thor and the rich set of tools, methods, and technologies shared and developed by Javascript
community make this technologies a natural choice.

Table 1: Summary of the key Web technologies and their inter-relationship used to develop
the new CROPTEST Desktop Application.

Component Used for Source a

Electron Create Desktop Application https://electronjs.org/
Webpack Bundle and minify application

for distribution
https://webpack.github.io/

BabelJS Transpiler b https://babeljs.io/
Node.js Javascript engine https://nodejs.org/en/
Semantic-UI Javascript User Interface

Framework
https://react.semantic-ui.com/

ReactJS JavaScript library for building
user interfaces

https://reactjs.org/

Jest Unit Test https://facebook.github.io/jest/
create-react-app Application template GH/facebook/create-react-app
react-redux Application state container for

JavaScript
https://redux.js.org/

react-router Declarative routing for React GH/ReactTraining/react-router
electron-builder Package and build an Electron

application ready for distribu-
tion

GH/electron-userland/electron-builder

a GH: https://github.com
b Conversion from draft ECMAScript version to default one that all modern Web Browser is able to run.

15CI: Continuous Integration / CD: Continuous Delivery
16OSS: Open Source Software

42

The project repository on Github was configured to check the source code automat-
ically for each pull request or commit from a local machine. This setup uses the Continuous
Integration configuration between a Github repository and Travis-CI [15].

Based on this configuration, each new tag added to the master branch of the repos-
itory start the build of the compiled version of CROPTEST to deliver using Github Releases
for each platform (Windows, Linux, and MacOS).

The new work-flow and interaction between user steps, to run CSM models (based
on batch files), parse the output files, calculate all statistics for both summary and evaluate
output, and show the outputs for the user on new user interface is presented in Figure 8.

Figure 8: The CROPTEST work-flow showing the relationship between DSSAT-CSM, User
Interface an API to run, parse, calculate and show the statistics for the user.

In short, Figure 8 clarify how this version is executed and which way it is responsible
for coordinating the operation between the user interface and the CropTest API (see more in
Chapter 4). The indicated sequence is related to the execution of CMS models, using batch
files as configuration.

The previous operation generates as output, among others, the two files used for
comparison (Summary and Evaluate) that are allocated within the correspondent folder
model. After, an API call is made from the CropTest interface and the required data are
shared as parameters – output files path and user defined threshold values.

The final step corresponds to the collecting processed data from API (summaries
and statistics) for exhibition to the user, directly on the main interface. The entire process oc-
curs dynamically and interactively, which offers greater agility to the model validation process
when compared to the earlier CropTest version.

43

3.0.4 Results and Discussion

In this section, some aspects of CROPTEST use through the steps of compare
results between models. The results presented here are related to test; and data analysis
realized before the release of version 4.7 compared with the last stable version 4.6 from
CSM.

Run Step

At the Run step, the user must select both models for comparison procedure, re-
membering that all comparison will use Model A as the reference. Before running the models
properly, it is necessary to build the binary version of CSM to use in comparison.

The CROPTEST use a folder hierarchy to run models and store the output files for
further analysis. The basic structure is composed of work folders for each model and a batch
files folder. At the first run, CROPTEST create two model folders to allocate the output files
during the CSM run step.

Beyond this behavior, also it is allowed to user select the CSM binary from any
filesystem folder. Table 2 describes the folders, contents use, default values and information
about persistence and user settings enabled.

Table 2: CROPTEST Desktop Application basic folder structure. Some settings could be
adjusted and persisted between executions, others are fixed and defined on first run. The
main folder is defined CTWork from last DSSAT version installed on the user computer.

Folder Contents Default Value User Change? Persistent?
ModelA Binary CSM file from

reference model.
DSSAT root folder Yes, each run. Yes

ModelB Binary CSM file from
proposed model.

CTWork\Model2 Yes, each run. Yes

WorkA Base directory for
Model A output files.

CTWork\WorkA No Yes

WorkB Base directory for
Model B output files.

CTWork\WorkB No Yes

BatchFiles Base directory for
Batch Files used for
crop model execution.

CTWork\BatchFiles No Yes

After selecting a crop model, the user could enable the use of “CTR”17 files dur-
ing the model run, this permit overwrites the DSSAT and experiments files18 configuration
related to output files. The next step is the choice of the Batch file to execute the models.

17A CTR file allows the user to set parameters that change the default behavior defined on each X file, it is
like a global setting that overhead the outputs and run parameters for CSM crop model.

18X files - Set options for each crop model, p.ex. WHX for setting Wheat experiments.

44

Figure 9: Snapshot of main window operations for the new CROPTEST. In detail, the
Run step, that permits the user to run CSM models from User Interface and observe the
results and running status.

All batch files located in the defined folder structure (Table 2) are parsed and shown
to the user. For each selection, the file content is exhibited inside batch files content panel
(Figure 10). As a default, each time the user changes the batch for Model A, it automatically
will be set to Model B. Otherwise, changes in Model B only reflects located change.

The CROPTEST show, the CSM selected at the top of model’s setting area, and
the selected batch file name is also shown (Figure 9). As a final step, the user needs to click
the “Run Model” button for each model – the CROPTEST could execute models in parallel.

When models finish their own run, the model output panel header change the color
to alert the user that the run is done. For the cases where the model could not run or
generate a warning output file, the button changes the color to reflect this behavior.

Figure 11 shows this behavior to alert the user of the current run state using
semaphore scheme colors (Ok: Model Output , Warning: Model Output , Error: Model Output)
alongside with the model output run.

Another functionality, designed to improve the interactivity with this process, is en-
abled when a warning or error files are detected during the model run to show the content
of these files in a separated container (Figure 12).

45

Figure 10: Snapshot of main window operations for the new CROPTEST. In detail, the
Run step, showing the parse and load content of Batch file inside “Batch File Content”
panel.

Figure 11: Snapshot of main window operations for the new CROPTEST. In detail, the
Run step, showing the parse and load content of Batch file inside “Batch File Content”
panel.

Analysis Step

Subsequently, the user must select the Analysis step to get all statistics and data
summary from model outputs. At this point, the analysis and comparison of the models

46

Figure 12: CROPTEST in detail, the Run step, showing the parse and load content of
Warning file inside “Warning/Error Output” panel.

are made using sub-steps: statistics and calculations from the summary and evaluate the
output.

During the parser of the files, the procedure checks if the files are valid DSSAT
output files and if they are compatible and comparable between then. In the worst case,
the user receives a message (Figure 13) saying that occur an error caused by a wrong file
format or because the files are incompatible.

If the procedure detects a subset compatible, though the analysis and calculation
proceed with this valid subset of both files. Specifically for evaluating output file, all compar-
ison is carried out by model crop, because each one has a specific conjoint of output data
(variables).

Figure 14 shows the statistical summary of comparison between models for evalu-
ate output file. On this data table, the calculations from observed and simulated values are
presented for each model output variable. Results are arranged side-by-side to make eas-
ier compare the models and find if the proposed new model is better than the last release
version.

After showing some snapshots from CROPTEST user interface and explain some
basic uses, it is important to describe the use of this tool during the evaluation of the new
version of DSSAT tagged as 4.7 before it became a public release.

It is important to note that the results presented here is only a sneak-peak of all
evaluation, and is based only on some crops that are available for use with DSSAT.

47

Figure 13: Snapshot of main window operations for the new CROPTEST. In detail, the
Analysis step, that permits the analyze the CSM models output for summary and evalu-
ate files. Image details for summary output file.

48

Figure 14: In detail, the Analysis step, that permits the analyze the CSM evaluate output
files. Each column shows the statistics for both models side-by-side to make the process of
decision easier.

49

Ta
bl

e
3:

C
R

O
P

TE
S

T
pa

rt
ia

lo
ut

pu
t(

m
in

,a
vg

an
d

m
ax

)o
fr

el
at

iv
e

di
ffe

re
nc

es
be

tw
ee

n
C

S
M

ve
rs

io
ns

4.
6

an
d

4.
7.

A
su

bs
et

of
al

ls
um

m
ar

y
ou

tp
ut

va
ria

bl
es

ar
e

ra
nd

om
ly

se
le

ct
ed

fo
rc

ro
ps

C
as

sa
va

,M
ai

ze
,P

ea
nu

t,
Po

ta
to

,R
ic

e,
S

oy
be

an
an

d
W

he
at

.

C
ro

p
S

ta
tis

tic
s

G
N

A
M

H
W

A
H

C
W

A
M

D
P

N
A

M
H

U
M

E
P

C
M

IR
C

M
D

M
P

IM
P

W
A

M
Y

P
IM

E
S

C
M

H
W

A
M

N
U

C
M

A
ve

ra
ge

6.
0%

-3
.6

%
-7

.2
%

-0
.1

%
-0

.1
%

-3
.2

%
6.

3%
0.

4%
6.

0%
M

ax
im

um
11

.1
%

-2
.9

%
0.

0%
0.

8%
0.

0%
-1

.1
%

9.
3%

1.
1%

11
.1

%
C

as
sa

va
M

in
im

um
3.

5%
-4

.3
%

-1
2.

5%
-0

.4
%

-2
.0

%
-4

.3
%

3.
6%

-0
.5

%
3.

5%

A
ve

ra
ge

0.
1%

0.
2%

0.
1%

0.
1%

0.
3%

0.
1%

0.
1%

0.
1%

0.
2%

0.
1%

-0
.0

%
0.

2%
0.

2%
M

ax
im

um
4.

5%
3.

8%
2.

7%
2.

7%
5.

1%
1.

1%
3.

2%
0.

3%
4.

2%
1.

3%
0.

0%
3.

8%
3.

0%
M

ai
ze

M
in

im
um

-6
.2

%
-0

.3
%

-0
.4

%
-0

.3
%

-0
.2

%
0.

0%
0.

0%
0.

0%
-0

.4
%

0.
0%

-1
.1

%
-0

.3
%

-0
.5

%

A
ve

ra
ge

0.
1%

0.
0%

0.
0%

0.
1%

-0
.3

%
0.

0%
0.

0%
0.

0%
0.

0%
0.

0%
-0

.0
%

0.
0%

1.
3%

M
ax

im
um

2.
7%

0.
9%

0.
9%

0.
5%

5.
9%

0.
6%

0.
0%

0.
9%

0.
8%

0.
9%

0.
7%

0.
9%

11
.1

%
P

ea
nu

t
M

in
im

um
0.

0%
-0

.1
%

-0
.2

%
-0

.1
%

-6
.2

%
0.

0%
0.

0%
-0

.2
%

-0
.1

%
-0

.1
%

-0
.8

%
-0

.1
%

0.
0%

A
ve

ra
ge

-2
2.

9%
-2

1.
6%

-1
1.

2%
-1

1.
2%

0.
0%

12
.3

%
4.

7%
-1

6.
5%

0.
0%

-2
7.

4%
-1

1.
7%

-2
1.

6%
0.

8%
M

ax
im

um
1.

4%
2.

7%
8.

2%
8.

1%
0.

0%
25

.8
%

12
.3

%
2.

0%
0.

0%
0.

0%
-1

.1
%

2.
7%

6.
8%

Po
ta

to
M

in
im

um
-5

8.
9%

-5
6.

7%
-3

9.
1%

-3
9.

3%
0.

0%
0.

9%
-1

.3
%

-3
9.

3%
0.

0%
-6

5.
6%

-2
1.

9%
-5

6.
7%

-1
7.

5%

A
ve

ra
ge

0.
1%

-4
.0

%
-3

.6
%

-2
.7

%
0.

2%
-0

.1
%

0.
6%

-4
.4

%
-3

.9
%

-4
.8

%
-0

.3
%

-4
.0

%
0.

6%
M

ax
im

um
1.

8%
12

.1
%

10
.6

%
10

.6
%

0.
6%

0.
9%

3.
0%

10
.5

%
11

.0
%

12
.2

%
3.

1%
12

.1
%

1.
9%

R
ic

e
M

in
im

um
-1

.0
%

-1
4.

2%
-1

8.
6%

-1
6.

8%
0.

0%
-2

.6
%

0.
0%

-2
2.

0%
-1

5.
3%

-1
6.

8%
-4

.2
%

-1
4.

2%
0.

0%

A
ve

ra
ge

0.
1%

0.
0%

0.
1%

0.
0%

0.
9%

0.
0%

0.
0%

0.
0%

0.
0%

-0
.1

%
0.

0%
0.

0%
1.

1%
M

ax
im

um
1.

3%
0.

4%
0.

8%
0.

0%
4.

8%
1.

5%
0.

0%
0.

7%
0.

4%
1.

2%
0.

2%
0.

4%
3.

2%
S

oy
be

an
M

in
im

um
-0

.9
%

-0
.7

%
-0

.8
%

0.
0%

-5
.0

%
-1

.1
%

0.
0%

-1
.8

%
-1

.1
%

-7
.1

%
0.

0%
-0

.7
%

0.
0%

A
ve

ra
ge

0.
5%

0.
6%

0.
4%

0.
4%

-0
.1

%
0.

2%
0.

0%
0.

7%
0.

6%
0.

9%
-0

.3
%

0.
6%

0.
7%

M
ax

im
um

1.
5%

1.
3%

1.
1%

1.
0%

0.
0%

0.
8%

0.
0%

1.
1%

1.
2%

1.
2%

0.
0%

1.
3%

1.
8%

W
he

at
M

in
im

um
0.

0%
0.

0%
0.

0%
0.

0%
-0

.4
%

0.
0%

0.
0%

0.
2%

0.
0%

0.
6%

-1
.5

%
0.

0%
0.

0%

50

From Table 3 is possible to see that some crops models show differences between
versions 4.6 and 4.7 of CSM models. Among them, it is important to note the statistics for
cassava, potato, and rice. As a reference to this process, from all 933 treatments tested, 264
shows differences between versions. Those treatments represent all data and experimental
context available to the DSSAT user as default.

3.0.5 Conclusions

The new CROPTEST interface have been designed to improve and make easier for
the DSSAT development community members to validate and analyze results between CSM
models. The step flow naturally carries out the user through the process with interactivity
and minimal interference.

Compared with the previous version the whole interface, usability, and consistency
to execute among diverse S.O. open the opportunity for developers to work with their favorite
systems and deliver a better CSM for all designed systems and platforms.

The use of this new version expands the earlier version with more statistics and
comparison possibilities, making the evaluation of a new CSM version more effective and
flexible. But this new version steel have some missing functionalities like the use of sensitivity
analysis.

The use of the CROPTEST to analyze and compare the results before the 4.7
release was a big result. Although in development, the experience to test in real conditions
and get feedback from the users was a great opportunity and provides a full list of lessons
learned during this process, especially because the reinforce of the choice to use Agile
Scrum methodology, while using Continuous Integration tools and systems.

A final word about the use of modern web technologies for desktop development
proved higher satisfactory and with a minimal effort to learn a new library and development
framework. All earlier knowledge from web development with Javascript was, and still is
treasured for developer that would like to offer high quality alternatives to their customers.

As next steps, this new interface needs to accommodate the possibility to generate
Batch files from the interface and the design and implementation of sensitivity analysis to
test the new models with aggregate graphical functionalities.

51

4. CROPTEST API

Abstract

This API offers the same competency test and routines available for both Desktop
and CI environment. The results observed for during the test setup was the same for both
executions. A CI setup was revealed using GitHub and Travis-CI as choose PaaS services
platform, but the same steps could be implemented in other platforms and vendors with a
minimal adjusts. Using R software as the main language associated with the deliver the
content as an API package proved to be a fast way to archive results based on statistics
calculation and data pre-processing because of the large ecosystem sustained by an open-
source community.

keyword

API, Continuous Integration, Data-Driven Test, Parser, R Package, Statistics

4.0.1 Introduction

An API is designed to encapsulate services and functionalities that need to be
shared between tools and other software as a common resource. Formally, it presents a
well defined and known access point that could receive inputs and parameters and return a
processed or calculated result.

The CROPTEST API control the core operations related to parsing, pre-processing,
statistical calculations, quantification of differences between models and pre-formatting data
for visualization on a desktop application.

In general, compare models is about summarizes the difference between observed
and simulated values. For this intent, one can choose statistical procedures to measure the
goodness-of-fit or, on the other hand, observe the lack-of-fit for those two set of values.

Model evaluation and comparison for DSSAT [6, 32] crop model outputs are per-
formed by parsing and analyzing the content of summary and evaluate files, these contain
the basic and most important information for crop model simulation.

The summary output file shows information about variables related to dry weight,
yield and yield components, water, nitrogen, phosphorus and organic matter, just to elucidate
some of them. These components show the whole picture from which treatment as result of
model output for crop simulation.

52

The evaluate output file shows information about the simulated and observed val-
ues for the same treatments as a summary file. Here, one must know how good is the crop
model performance in relation to the fields observation.

But, both files only exhibits the numeric information, and any type of statistical or
mathematical performance evaluation needs to be done in an external software like spread-
sheets or statistical software.

This is the most valuable contribution of the proposed API, it is responsible for au-
tomatically performs all necessary calculations and statistical summarization for comparing
individual input models – like the difference between the simulated and observed value for
each variable for the evaluate output file – and for calculations for comparison between input
models.

All API procedures and calculations are encapsulated into an R package, to make
easier to distribute and use with both the desktop application and a continuous integration
setup, and this approach makes the maintenance consistent and affordable.

The parsers automatically extract the information from inputs based on meta-heuristic
procedure that use a group of positional and table rules to define the content to be extracted
during the parse.

To develop this API was chosen an analogous approach used in other scientific
contexts, along with the procedures already in use for the DSSAT statistical routines. Un-
fortunately, with the author’s best knowledge and exhaustive research of relevant literature,
there has been no related work describing this approach.

In Section 4.0.2 we describe shortly the technical background that makes the API
runs. Section 4.0.3 show the materials and computational methods used to develop the API.
Section 4.0.4 describe the results gathered from an API run from Travis-CI. Section 4.0.5
discuss the conclusions and presents the next steps and further works.

4.0.2 Background

API language development can affect the service performance and the long-term
maintenance, based on these points the developer is responsible by the choice of one that
could deliver the best experience for the client that needs this service.

For jobs related to parsing and processing data, computer languages that are de-
signed for this intent offer an advantage when compared with general purposes ones like
NodeJS19, C++20, and Python21.

19https://nodejs.org
20https://isocpp.org
21https://www.python.org

53

The R software [33] is a computer language and environment created and designed
for data analysis, also it posses a large open source community22 and a repository23 to share
functionalities written and delivered in packages format.

Because the primary attributions of this API are related to parsing, preprocess-
ing, and calculating comparison statistics based on input data, using community maintained
packages could certainly reduce development time. Another method could be to develop a
generic parser using the minimum rule setting.

For this method, the process of parsing a file must first define a minimum number
of rules that describe in the list the types and amount of information that will be required to
read and store for the subsequent procedure. For general purpose analysis, you need to
write this minimum content setting, and the most common implementation uses a grammar
specification [34].

Apart from the grammar specification is a powerful tool, sometimes it is only nec-
essary the implementation of a smaller subset or a tokenized parser version based on table
rules or meta-heuristics. This kind of simplification intended to make maintenance easier
and still achieve good results.

Fortunately, it is possible to use a grammar specification from a R package, this is
the intent of the “readr” package [23] a powerful tool to read text file types, like ones related
to summary and evaluate outputs files from DSSAT. Other R packages was used to provide
all functionalities necessary to this API, and all them will be described at Section 4.0.3.

It is important to note that all procedures implemented in API were designed to run
from an R environment and supply the results to the CropTest Desktop Application and to
be used as a command line tool from a Continuous Integration (CI) platform.

Currently the CI is the most common step in the software release life-cycle. In
fact, this tools improve the management of the process substantially and accelerate the time
between development and test process [35, 36, 37].

Jamil et al [38] review the practices for testing software and describe this step
with fundamental importance, especially because of the growing complexity of software.
Kanewala et al [27] explore the same for scientific software context and, again, cite this as
an important role in overall software quality.

4.0.3 Material and Methods

The R package API for CROPTEST was developed using the official manual to
write R extensions [39], and the materials of best practices to develop a new R package

22GitHub: https://github.com/search?l=R&q=R&type=Repositories
23CRAN: https://cran.r-project.org

54

[40, 41]. Eddelbuettel et al [42, 43, 44] describes all steps necessary to integrate and extend
R software using C++ programming language.

The parser functionalities are generic to accommodate and check a broad range
of situations of resulting summary and evaluate output files, including functions to smooth
response to errors and were developed using functionalities from package “readr” [23] to
read data from output files and “dplyr” [24] to pre-processing and calculations for the file’s
contents.

For the comparison procedure, the algorithm compares the first model (called
Model A), as default it is the last stable version installed in user machine or the master
branch for online execution, with the proposed one. The calculations for summary output
utilizes the “Model A” as the reference to calculate the relative difference between numeric
variables, and for date ones, the procedure calculates the absolute difference.

Other statistics used for comparison in summary file context, they are minimum,
average and maximum observed value; standard deviation, the number and percent of treat-
ments higher than the threshold, the number and percent of treatments tagged as an outlier
(using box-and-whisker procedure [18]) and the number of treatments used for calculation.

In the evaluate file context, they are: agreement index, D-statistic, model efficiency,
mean absolute error (MAE), the mean for difference, observed and simulated values, the
number values for observed and simulated, the root mean squared error (RMSE), the nor-
malized RMSE, the R squared (R2) and the standard deviation for observed and simulated
values [19].

After all calculations, the data results are exported back to the CropTest Desktop
Application as JSON24 [25] or as raw text to be used in CI process as a back-end API
service [26]. The benefit to providing this API as a package is related to the possibility
to use the same code in both environments, but before the use with CI, some additional
configuration need to be done at the planned platform, for this work the choice was made by
GitHub.

The detailed workflow process is illustrated in Figure 15, these steps occur between
online services (PaaS) and is responsible for producing a test routine alongside with the build
and binary release.

The automation setup is based on a configuration file with all necessary steps
needed to complete the test using API functions. The main communication between services
are done using “listeners” and “webhooks”25.

When the developer makes a change in the code on the local machine and submits
to the GitHub, a webhook is trigged to start the CI process on the service server. At this

24JSON (JavaScript Object Notation): https://www.json.org
25Webhooks provide a way to deliver notifications to an external web server when certain actions occur. For

more information, see https://developer.github.com/webhooks/

55

service, a new virtual machine starts the process of building and test this new proposed
source code.

After the build step finished, the test procedure starts and validates this proposed
version comparing the results from this run with one from a stable version. If all procedure
is successful, the release content is sent back to the GitHub as a new binary release.

Figure 15: Workflow and related key steps necessary to test a new CSM version hosted on
GitHub with environment allocated on Travis-CI.

To use the API in CI environment it is necessary to define a configuration file which
elucidates the dependencies, procedures and tests that the overall process needs to con-
clude. As a sample for this configuration content, a pseudo-algorithm (4.1) details the mini-
mal requirements and procedures necessary to build and test a new version of the DSSAT-
CSM.

4.0.4 Results and Discussions

The API workflow is illustrated in Figure 16 where, in the main procedure, it received
as parameters the path from input files (Summary and Evaluate) and the thresholds for
numeric and date comparison (Summary) and the crop (Evaluate).

These parameters are received by the API in two ways: using the command line
(R script) from a CI setup or through HTTP call. After, the parser procedures execute their

56

1: Enable configuration at GitHub
2: Enable access from CI platform to the repository
3: Add tasks to the CI configuration file at repository
4: while Build using Linux machine on CI platform do
5: Install Cmake for compiling DSSAT
6: Install R and dependency packages for API
7: Clone DSSAT data structure
8: Clone DSSAT source structure
9: Clone API source structure

10: Compile DSSAT using CMake
11: if Compile DSSAT successfully then
12: Copy final DSCSM0XX.EXE file to data structure
13: Build and install API
14: Run check script with input Batch Files
15: if API Check is successfully then
16: Report comparison table output
17: else
18: Report comparison error
19: end if
20: else
21: Report compilation error
22: end if
23: end while

Algorithm 4.1: Pseudocode with steps necessary to configure an automation for test new
versions of CSM using Travis-CI or Circle-CI.

code using helper functions from “readr” package, followed by the pre-processing routines
(“dplyr” package).

The core step occurs during the statistics calculations for both summary and eval-
uate inputs. In the end, these outputs are sent back as a JSON file using HTTP response
(“jsonlite” package) or as a text file using “readr” package.

To check the API operation and results, a test was conducted comparing the results
obtained from a local execution (CropTest Desktop) and from a PaaS execution using GitHub
and Travis-CI configuration setup.

For the pair GitHub/Travis-CI, the procedure was enabled in a fork from the devel-
opment branch from DSSAT GibHub repository which was used for setup and configurations
test. Subsequent to all settings, some minimal changes in the code was committed to test
and evaluate this new setup.

The first step was checking if the DSSAT-CSM binary was built correctly. After, the
next test was related to the installation of the API, and the final was the batch file execution
using the DSSAT data structure. For this setup, the check will be successful if the sum of
variables (columns) with the relative or absolute difference between the models is equal to
zero (no differences higher than the base threshold).

57

As default setting for CI platforms, if one step fails, all check procedure stops, and
the last error are reported from CI platform log file, and an e-mail with a link to the log file is
sent to the user registered as the owner of the repository.

During the execution of this configuration setup, the overall process from the com-
mit through the finish and test report records the same results from one with changes made
only locally and obtained using the CropTest Desktop version.

It is important to note that this result validate and confirm that the configuration
setup, using only the API, could figure an alternative way to offer all DDT test routines to
a larger number of developers inside DSSAT community, based on the possibility to run
tests online at PaaS service like Travis-CI and archive the same results as run locally, using
desktop version of the CROPTEST.

Overall, this represents a better use of time by the development team to manages
the pull request and proposed changes because, before this configuration, one of the DSSAT
developer members must download the proposed change in your own machine, build, and
checks the errors and improvements by itself using Desktop version.

This procedure could be enabled to run from once a day to more intensive test,
where each commit to the develop branch will start the whole process. All these must be set
at CI panel settings for the enabled repository, in addition to batch files that will be run and
the config file with the threshold default settings.

Figure 16: The CROPTEST API work-flow showing the relationship between CSM output
files, parser procedure, statistics calculations and results output to the user and for shell
interaction (CI Platform).

58

Upcoming, this setup enables the DSSAT developer team to deliver software [45]
with less effort related to the testing process and with a possibility to have improvements
historical data over time and, also, other types of analysis [46, 47].

Beller et al [35] describe that (CI) has become a best practice of modern software
development and show the importance of software test as the reason why builds fail (10%
more failures being caught at build time).

4.0.5 Conclusions

Using the same code in both Desktop and CI validation improve the efficiency and
makes the test procedure transparent to the contributor and to maintain. The potential re-
striction for use in CI online validation is related to the time to get the result but as compen-
sation, the maintainer receives an e-mail with the output of test without extra effort.

All statistics and intermediate calculations are developed using R software as the
base programming language, which makes it easy to extend and add new calculations and
statistics using any of the community package contributions without the obligation to write
the all the code from scratch.

The results obtained during the tests are the same for Desktop and CI version,
which validate the accuracy from the API procedures results independent of environment
setup.

Moreover the setup implemented was too simplistic, it is possible to make tests
improvements related with the expanding the covering settings which intent to receive more
information between available models’ differences.

As final remarks, this work shows how to implement a setup for using the CropTest
API for testing in both scenarios, local and remote. Also confirms that the results were the
same and, lastly, this type of setup could be used in other scientific projects to help and
improve the software quality.

59

5. CONCLUSIONS AND FUTURE WORKS

As a final remarks from this work, the implementation of a test procedure that re-
sults in no change in the CSM source code and still could delivery with quality feedback
to developers with intents to generate a final software with fewer bugs and improving the
already known high quality of DSSAT suite.

Both Desktop and API design and implementation proved to be a good challenge
in the sense of looking for alternatives always with the goal to bring the methods and tech-
niques that are well established in Computer Science professionals and community, but still
far from ideal on Scientific Developer community. In the end, this present work is one more
step to fill this gap between areas that certainly could generate better user experience with
higher software quality for use inside scientific community.

For general conclusions, comparing with the previews version the whole interface,
usability, and consistency to execute among diverse Operating Systems (OS) are improved.
This opens the opportunity for developers to work with their favorite systems and deliver a
better CSM for all designed systems and platforms.

With this new interface, the steps flow naturally and carry out the user through the
process with interactivity, minimal interference, and improved performance. This achieve-
ment is related to the use of modern web technologies for desktop development provides
higher satisfactory software. The further maintenance could be easier archived, in part, be-
cause of the growing number of Web developers with knowledge of Javascript and related
technologies.

The API supports the development both in Desktop and in Continuous Integration
(CI) platforms. The parser procedure use table rules and meta-heuristics to extract the
content from the summary and evaluate output files in a flexible and robust way. All statistics
and calculations are developed using R software, which makes it easy to extend and add
new calculations and statistics using well-known language with community support without
the obligation to write the all the code from scratch. The R API Package used in both
Desktop and CI validation improve the efficiency and makes the test procedure transparent
to the contributor and to maintain.

As future works for each component that was being developed during this effort,
the author could elect these follows:

• Desktop: As next steps, this new interface needs to accommodate the possibility to
design and implementation of sensitivity analysis to test the new models with aggre-
gate graphical functionalities.

60

• API: As next steps, will be necessary to define a better validation procedure for CI
tests with the possibility to have a configuration files defining the procedure. Add a
procedure to generate and update the references files for comparison (CSM stable
version). Add calculations and procedures to run sensitivity analysis.

• Continuous Integration: The frequency of code validation on CI need to be set to
accommodate the actual reality for DSSAT developer community, and this could be
revised at specific times in the future; Discuss with DSSAT Core Team the better ap-
proach to deliver this automation procedure from main DSSAT Repository; and write
and deliver a better documentation of the steps and type of settings.

61

REFERENCES

[1] Tsai, B.-Y.; Stobart, S.; Parrington, N.; Thompson, J. B. “Iterative design and testing
within the software development life cycle”, Software Quality Journal, vol. 6, 1997, pp.
295–310.

[2] Jan, S. R.; Shah, S. T. U.; Johar, Z. U.; Shah, Y.; Khan, F. “An innovative approach
to investigate various software testing techniques and strategies”, International Journal
of Scientific Research in Science, Engineering and Technology (IJSRSET), Print ISSN,
2016, pp. 2395–1990.

[3] Laukkanen, P. “Data-Driven and Keyword-Driven Test Automation Frameworks”, Ph.D.
Thesis, 2006.

[4] Sommerville, I. “Software Engineering”. USA: Addison-Wesley Publishing Company,
2010, 9th ed..

[5] Tsuji, G. Y. “Network management and information dissemination for agrotechnology
transfer”. In: Understanding Options for Agricultural Production, Tsuji, G. Y.; ;
Hoogenboom, G.; ; Thornton, P. K. (Editors), Springer, Dordrecht, 1998, chap. 18,
pp. 367–381.

[6] Jones, J.; Hoogenboom, G.; Porter, C.; Boote, K.; Batchelor, W.; Hunt, L.; Wilkens,
P.; Singh, U.; Gijsman, A.; Ritchie, J. “The DSSAT cropping system model”, European
Journal of Agronomy, vol. 18–3-4, jan 2003, pp. 235–265.

[7] McCown, R.; Hammer, G.; Hargreaves, J.; Holzworth, D.; Freebairn, D. “Apsim: a novel
software system for model development, model testing and simulation in agricultural
systems research”, Agricultural systems, vol. 50–3, 1996, pp. 255–271.

[8] Feldt, R. “Do system test cases grow old?” In: Software Testing, Verification and
Validation (ICST), 2014 IEEE Seventh International Conference on, 2014, pp. 343–
352.

[9] Lindvall, M.; Ganesan, D.; Ardal, R.; Wiegand, R. E. “Metamorphic Model-Based
Testing Applied on NASA DAT – An Experience Report”. In: 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, 2015, pp. 129–138.

[10] Porter, C. H.; Jones, J. W.; Hoogenboom, G. “DSSAT model comparison utility
(CropTest)”. In: DSSAT v4. A Decision Support System for Agrotechnology Transfer,
Jones, J. W.; Hoogenboom, G.; Wilkens, P. W.; Porter, C. H.; Tsuji, G. Y. (Editors),
University of Hawaii: ICASA Tools. International Consortium for Agricultural Systems
Applications, 2004, vol. 4, chap. 3, pp. 1–29.

62

[11] Wilson, G.; Aruliah, D. A.; Brown, C. T.; Chue Hong, N. P.; Davis, M.; Guy, R. T.;
Haddock, S. H. D.; Huff, K. D.; Mitchell, I. M.; Plumbley, M. D.; Waugh, B.; White, E. P.;
Wilson, P. “Best practices for scientific computing.”, PLoS biology, vol. 12–1, jan 2014,
pp. e1001745, arXiv:1210.0530v4.

[12] Beck, K.; Beedle, M.; Van Bennekum, A.; Cockburn, A.; Cunningham, W.; Fowler, M.;
Grenning, J.; Highsmith, J.; Hunt, A.; Jeffries, R.; Others. “Manifesto for agile software
development”, 2001.

[13] Rising, L.; Janoff, N. “The Scrum software development process for small teams”, IEEE
Software, vol. 17–4, 2000, pp. 26–32.

[14] Fitzgerald, B.; Stol, K.-J. “Continuous software engineering: A roadmap and agenda”,
Journal of Systems and Software, vol. 123, 2017, pp. 176 – 189.

[15] Travis CI. “Travis CI”. Source: https://travis-ci.org/, 2018.

[16] Github Core Team. “Introducing Projects for Organizations”. Source: https://github.com/
blog/2272-introducing-projects-for-organizations, 2017.

[17] Deshpande, A.; Riehle, D. “Continuous integration in open source software
development”. In: IFIP International Conference on Open Source Systems, 2008, pp.
273–280.

[18] Krzywinski, M.; Altman, N. “Visualizing samples with box plots.”, Nature methods,
vol. 11–2, feb 2014, pp. 119–20.

[19] Yang, J.; Yang, J.; Liu, S.; Hoogenboom, G. “An evaluation of the statistical methods for
testing the performance of crop models with observed data”, Agricultural Systems, vol.
127, may 2014, pp. 81–89.

[20] Electron Core Team. “Electron”. Source: https://electronjs.org/, 2018.

[21] Node.js Team. “Node.js”. Source: https://nodejs.org/en/, 2017.

[22] Facebook Inc. “A JavaScript library for building user interfaces | React”. Source:
https://facebook.github.io/react/, 2014.

[23] Wickham, H.; Hester, J.; Francois, R. “Read Rectangular Text Data Description”.
Source: https://cran.r-project.org/package=readr, 2017.

[24] Wickham, H.; Francois, R. “A Grammar of Data Manipulation”. Source: https://cran.
r-project.org/package=dplyr, 2015.

[25] Ooms, J. “The jsonlite Package: A Practical and Consistent Mapping Between JSON
Data and R Objects”, arXiv:1403.2805 [stat.CO], mar 2014, 1403.2805.

63

[26] Smeets, B. “A Simple Web Framework for R”. Source: https://cran.r-project.org/
package=jug, 2017.

[27] Kanewala, U.; Bieman, J. M. “Testing Scientific Software: A Systematic Literature
Review.”, Information and software technology, vol. 56–10, oct 2014, pp. 1219–1232.

[28] Kelly, D.; Sanders, R. “The Challenge of Testing Scientific Software”. In: CAST 2008:
Beyond the Boundaries, 2008.

[29] Chen, A. H.; David, P. “FORTRAN Unit Test Framework (FRUIT)”. Source: https:
//sourceforge.net/projects/fortranxunit/, 2008.

[30] Oloso, A.; Cruz, C.; Rilee, M. L.; David, A.; Clune, T. “pFUnit”. Source: https:
//sourceforge.net/projects/pfunit/, 2005.

[31] Abrahamsson, P.; Salo, O.; Ronkainen, J.; Warsta, J. “Agile Software Development
Methods: Review and Analysis”, Computer Science Education, vol. 12–3, sep 2017,
pp. 167–168, 1709.08439.

[32] Hoogenboom, G.; Porter, C.; Shelia, V.; Boote, K.; Singh, U.; White, J.; Hunt, L.; Ogoshi,
R.; Lizaso, J.; Koo, J.; Asseng, S.; Singels, A.; Moreno, L.; Jones, J. “Decision Support
System for Agrotechnology Transfer (DSSAT)”. Source: https://dssat.net, 2017.

[33] R Core Team. “R: A Language and Environment for Statistical Computing”. Source:
https://www.r-project.org/, 2017.

[34] de Guzman, J.; Kaiser, H. “Boost-spirit, c++ libraries for parsing and output generation”.
Source: http://boost-spirit.com, 2015.

[35] Beller, M.; Gousios, G.; Zaidman, A. “TravisTorrent: Synthesizing Travis CI and
GitHub for Full-Stack Research on Continuous Integration”. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), 2017, pp. 447–450.

[36] Tim Heckel. “Meet Travis CI: Open Source Continuous Integration”. Source: https:
//www.infoq.com/news/2013/02/travis-ci, 2013.

[37] Beller, M.; Gousios, G.; Zaidman, A. “Oops, My Tests Broke the Build: An Explorative
Analysis of Travis CI with GitHub”. In: 2017 IEEE/ACM 14th International Conference
on Mining Software Repositories (MSR), 2017, pp. 356–367.

[38] Jamil, M. A.; Arif, M.; Abubakar, N. S. A.; Ahmad, A. “Software Testing Techniques:
A Literature Review”. In: 2016 6th International Conference on Information and
Communication Technology for The Muslim World (ICT4M), 2016, pp. 177–182.

[39] R Core Team. “Writing R extensions”, 2017.

64

[40] Sugawara, E.; Nikaido, H. “Properties of AdeABC and AdeIJK efflux systems of
Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia
coli.”, Antimicrobial agents and chemotherapy, vol. 58–12, dec 2014, pp. 7250–7,
1011.1669.

[41] Wickham, H. “Advanced R”. Source: http://adv-r.had.co.nz/, 2016.

[42] Eddelbuettel, D.; François, R. “Rcpp : Seamless R and C++ Integration”, Journal of
Statistical Software, vol. 40–8, 2011, pp. 1–18.

[43] Eddelbuettel, D. “Seamless R and C++ Integration with Rcpp”. New York, NY: Springer
New York, 2013.

[44] Eddelbuettel, D.; Balamuta, J. J. “Extending R with C++: A Brief Introduction to Rcpp”,
PeerJ Preprints, vol. 5, 2017, pp. 1—-27.

[45] Catelani, M.; Ciani, L.; Scarano, V. L.; Bacioccola, A. “Software automated testing:
A solution to maximize the test plan coverage and to increase software reliability and
quality in use”, Computer Standards & Interfaces, vol. 33–2, feb 2011, pp. 152–158.

[46] Santos, E. A.; Hindle, A. “Judging a commit by its cover”. In: Proceedings of the 13th
International Workshop on Mining Software Repositories - MSR ’16, 2016, pp. 504–
507.

[47] Souza, R.; Silva, B. “Sentiment Analysis of Travis CI Builds”. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR), 2017, pp. 459–462.

