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SIMULAÇÃO DE PRAGAS EM MODELOS DE CRESCIMENTO DE TRIGO

RESUMO

Pragas e doenças são conhecidas por causar danos às lavouras de trigo (Triticum aestivum
L.) e reduzir o desenvolvimento das mesmas. Esses estresses bióticos estão frequente-
mente, ou sempre, associados à perda de safras que ameaçam a produção de trigo em
todo o mundo. Modelos de doenças de plantas podem ajudar a estimar o impacto de pra-
gas e doenças no crescimento da cultura, no entanto, isso ainda é um desafio, pois este
impacto é pouco reconhecido como um dos principais fatores que limitam a produtividade.
O objetivo deste projeto foi desenvolver e testar um método para simular pragas e doen-
ças do trigo por meio do modelo de simulação de trigo CSM-NWheat e estudar a redução
no desenvolvimento da cultura e da produtividade devido ao estresse biótico. Este estudo
também se comprometeu a desenvolver uma abordagem dinâmica usando uma interface
MPI (Message Passing Interface) para acoplar o mesmo modelo de crescimento do trigo
com vários modelos de doenças, a fim de analisar os efeitos prejudiciais do oídio (Blumeria
graminis f. Sp. Tritici), mancha marrom (Pyrenophora tritici-repentis) e giberela (Gibberella
zeae) na produção de trigo. Com a implementação observou-se um aumento na exatidão
do modelo do trigo onde o rendimento e o índice de área foliar (AF) simulado obtiveram va-
lores mais próximos a realidade. O CSM-NWheat agora pode estimar os danos no índice de
área foliar, massa foliar, massa do caule, massa da raiz, massa da semente, AF necrótica,
assimilados e a planta como um todo. A estratégia multimodelo também mostrou um efeito
positivo na simulação de perdas de safra devido à infecção fúngica e um novo método de
acoplamento para modelos de trigo.

Palavras-Chave: Estresses bióticos, crescimento do trigo, DSSAT, modelos de doenças de
plantas.



SIMULATING PEST AND DISEASE DAMAGE IN WHEAT
PROCESS-BASED CROP MODELS

ABSTRACT

Pests and diseases are known for causing damage to wheat (Triticum aestivum L.) crops and
reduce plant development. These biotic stresses are often, or always, associated with crop
loss which threatens wheat production and security worldwide. Plant disease models can
help estimate the impact of pests and diseases on crop growth however, this is still a chal-
lenge since it is poorly recognized as one of the main factors that limit yield. The objective of
this project was to develop and test a method to simulate wheat pests and diseases through
the CSM-NWheat wheat model and study the reduction in crop development and yield due
to biotic stress. This study also compromised to develop a dynamic approach using an MPI
(Message Passing Interface) interface to couple the same wheat growth model with multiple
disease models to analyze the damaging effects of powdery mildew (Blumeria graminis f.
sp. tritici), tan spot (Pyrenophora tritici-repentis) and fusarium head blight (Gibberella zeae)
on wheat yield. The newly pest-coupled CSM-NWheat can now estimate damage on leaf
area index (LAI), leaf mass, stem mass, root mass, seed mass, necrotic leaf area, assim-
ilates, and the whole/complete plant. Case studies demonstrated the model’s capability of
simulating losses due to pest and disease infection similarly to the field observed data. Ad-
ditionally, the multi-model strategy presented a positive effect on simulating crop losses due
to fungal infection as well as a new coupling method for wheat models. This model extension
enhanced the accuracy of the wheat model and, compared with the field data, the simulated
yield and LAI were improved to a great extent.

Keywords: Biotic stresses, wheat growth, DSSAT, plant disease models.
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1. INTRODUCTION

Wheat (Triticum aestivum L.) provides nearly 20% of the daily calories and protein
to the global population. It is one of the world’s most consumed cereals and a major staple
food in many countries [1]. With the crescent growth of the population worldwide, the need
to enhance wheat production and its security as a food source raise exponentially. Conse-
quently, this requires methods to help farmers maximize crop yield and minimize loss. Crop
pathogens and pests are estimated to be responsible for 20% to 40% of the worldwide agri-
cultural production loss and 10.1 to 28.1% of global production losses of wheat crops [2].
The ever-growing necessity of maximizing crop yield also brings up the necessity to control
and reduce the pest incidence. Modeling tools such as crop growth models and pest models
can supply this need and provide means to increase crop production. However, measuring
the impact of plant pests and diseases on plant growth and development is currently an im-
portant and, at the same time, poorly studied research question within the crop modeling
community [3, 4, 5].

In the early 1980’s, pest and disease frameworks started to be developed as at-
tempts to quantify the effects of pests and diseases on crop performance [6]. Along with,
crop simulation models were designed to predict crop growth using two modeling approaches:
the empirical, regression models that describes effects only at the level of observation; and
the mechanistic, physiological models capable of explaining the observed growth rates in
relation to the environmental factors [7]. Mechanistic models were the underlying method
which crop models started to be coupled with pest models and/or assess pest management
[8, 9].

The representation of damaging effects due to pests and diseases infection on crop
growth can be given in several levels through functions for pest population dynamics and
disease life cycle, for example. Boote [10] defined seven categories which pest damage can
affect the carbon flow processes in crop models based on the types of damage these pests
and diseases do: stand reducer, photosynthetic rate reducer, leaf senescence accelerator,
light stealer, assimilate sapper, tissue eater or consumer, and turgor reducer. These damage
mechanisms serve as a general method to incorporate the impact of pests and diseases into
crop models. Based on this principles, pest coupling points were incorporated inside the
Cropping System Model (CSM) of the Decision Support System for Agrotechnology Transfer
(DSSAT) [11, 12, 13] which eventually led to the creation of a pest module (PEST) [14].
Although some mechanistic methods were created to simulate damage on wheat leaf area
index (LAI) and grain yield [15, 16, 17], the account for pest and disease are still missing in
many wheat models, this includes the wheat models within the DSSAT platform (CROPSIM-
Wheat [18] and NWheat [19]).
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The main objective of this thesis is to expand the PEST module inside DSSAT
through the development of coupling points and pest subroutines inside the CSM-NWheat,
a wheat crop growth model, to simulate and account the pest and disease damaging effects
on wheat crops. Additionally, develop fungal disease models to simulate the disease cycle
of powdery mildew (Blumeria graminis f. sp. tritici), tan spot (Pyrenophora tritici-repentis)
and fusarium head blight (Gibberella zeae) and estimate the effects on wheat growth and
yield. This work represents a new method to predict disease effects on crops and also
enhance the decision support capability by providing useful production predictions in a real
farm conditions.

The present work was divided into chapters based on two papers each as a chapter
detailing the development of this project. Chapter 2 gives a brief overview of the agricultural
pests and background on crop and pest modeling. Chapter 3 discuss the implementation of
pest and disease coupling points inside the DSSAT CSM-NWheat to allow the damage esti-
mation of pest and pathogens on wheat crops. This stands as one of the first wheat model
capable of estimating pest damage during crop growth simulation. The Chapter 4, details
the development of a multiple disease modeling approach, using the previous developed
coupling points and a MPI interface, to simulate the effects of multiple pests in a wheat crop.
Chapter 5 presents a summarization of this project and future work.
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2. BACKGROUND

2.1 AGRICULTURAL PESTS AND DISEASES

Plant pests and diseases are one of the main factors that limit crop production
and threaten food security worldwide. The spread of pests and diseases increased rapidly
across crop growing areas in recent years. Globalization, climate change and the rise on
food demand are factors that may have collaborated to the increase of pest and disease
pressure on agricultural systems [20], impacting their behaviour and distribution.

Transboundary plant pests and diseases such as wheat and rice blast, caused by
fungal pathogens, Magnaporthe oryzae triticum (MoT) and Magnaporthe oryzae triticum are
destructive diseases that affect grain development of wheat and rice [21]. Rainy and humid
weather conditions are critical for infection since these pathogens require free moisture on
the plant surface to penetrate the host cells [22] (Figure 1). Both MoT and Magnaporthe
oryzae pathogens are hemibiotrophic, organisms that infect living tissue for some time and,
afterward, live on dead tissue [23]. The life cycle of these diseases starts when the as-
cospore pierce the host cuticle and the fungus starts to grow within the plant cells. These
eventually lead to disease lesions and, when high humidity conditions are reached, the fun-
gus sporulates and spreads to adjacent plants through the wind or water droplets. Later, as
the lesions become apparent, the fungus starts its necrotrophic phase promoting plant cell
death [24].

Figure 1. Wheat field conditions after rainfall favoring plant-pathogenic fungus infection

Other fungal diseases caused by some species of Fusarium produce mycotoxins
to enter the seed structure causing tissue necrosis inside the kernels. This mycotoxins are
used to disable plant defense mechanisms while killing the host cells. For example, the
deoxynivalenol (DON) is the main mycotoxin produced by Fusarium gramenearum [25] and
it is toxic to humans and animals [26].

Insect pests such as the Helicoverpa Zea and Helicoverpa Armigera are also ex-
tremely harmful to crop production. The development of these insects depend strictly on
temperature, rainfall and the food source available [20] whereas the larvae can rear on a
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large variety of plants. Helicoverpa Zea, popular known as corn earworm, is a major prob-
lem in North America and can be found in crops of soybean, cotton, tomatoes and others.
Helicoverpa Armigera, also known as cotton bollworm, is a moth easily found in Africa, Eu-
rope and Asia and has developed resistance for a wide range of insecticides [27].

2.2 WHEAT FUNGAL PATHOGENS

Wheat is commonly attacked by fungal pathogens such as rust diseases, leaf spot
diseases and others [28]. This parasites attack and destroy plant cells and can have a huge
impact on the wheat production in the world. A clear example of disaster caused by biotic
stresses is the major outbreak of wheat blast in Bangladesh, a disease that prior to this
event was only found in wheat crops of South America, which resulted in a 51% yield loss in
2016 [29, 21]. Ceresini et al. [30] assumed that the wheat blast outbreak happened through
wheat grain trading from Brazil to Bangladesh.

Pathogens such as powdery mildew (Blumeria graminis f. sp. tritici), tan spot
(Pyrenophora tritici-repentis) and fusarium head blight (Gibberella zeae) have different as-
pects and conditions for infection. For example, powdery mildew disease is a biotrophic
parasite that feeds only on living plant stem and leaves, producing white powdery spots that
reduce the efficiency of photosynthesis [31]. The spores infect the host cells through pen-
etration pegs causing the plant to shunt resources to the fungus. Its optimal environmental
conditions for germination is with temperature between 15 and 25 °C with relative humidity
higher than 85%. On the other hand, necrotrophic parasites such as tan spot and fusarium
head blight (FHB) survive on dead tissues and do not necessarily need a living host plant.
These diseases infects wheat plants under warm and humid environments and induce plant
chlorosis and necrosis symptoms. Tan spot infects the wheat leaves and the fungus de-
stroys the living tissue expanding into lens-shaped lesions with a brown spot in the center
and yellow borders [32]. FHB infects the wheat grains resulting in kernel weight reduction,
quality deterioration and mycotoxin contamination. This mycotoxin named Deoxynivalenol
or DON is toxic not only to humans but also to livestock animals [25].

Plant breeding has been largely used in order to produce cultivar with high re-
sistance against certain diseases and reduce disease impact [33] but, there are no wheat
cultivars resistant to multiple diseases and all races. Integrated pest management has also
shown positive effects against crop pests and diseases in general. However, the gap be-
tween potential and attained yield still is substantial. For this reason, crop models coupled
with pest and disease models can help reduce this yield loss.
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2.3 CROP MODELING

As agricultural systems become more complex and intense, the demand for better
means of environmental control within planting areas increases. Crop simulation models
(CSM) can help supply a basis for improving soil and crop management as well as crop
production. These simulation models are employed as a way to describe and predict crop
growth, taking into consideration factors such as weather conditions, soil type, crop man-
agement, and others. Platforms for crop growth simulation such as the Decision Support
System for Agrotechnology Transfer (DSSAT) and the Agricultural Production Systems sIM-
ulator (APSIM) are frameworks used to simulate biophysical processes in farming systems
for a diverse range of crops [14, 34].

2.3.1 Agricultural Production Systems sIMulator

Agricultural Production Systems sIMulator (APSIM) is a suite of models capable
of simulating of complex agricultural systems such as soil, crop, tree, pasture and livestock.
The framework was originally developed using FORTRAN in early 90’s. Recently, the APISM
initiative started bulding the next generation [35] of APSIM using GTK for creating a new
cross-platform application. However, APSIM currently does not incorporate pests and dis-
eases damage during crop growth simulation.

2.3.2 Decision Support System for Agrotechnology Transfer

The Decision Support System for Agrotechnology Transfer (DSSAT) platform com-
prises more than forty-two crop models that simulate plant development, taking into account
multiple variables, like soil type, weather, genetics, crop management, and others [36, 14]. It
provides tools to assist the user in preparing the different input files required to run a model,
conduct analysis of the simulation outputs, and compare them with the observed data. The
Cropping System Model (CSM) of DSSAT simulates crop growth, biomass development and
yield as a function of the environment dynamics such as weather, soil and plant interactions.
The DSSAT platform also has a built-in pest module called PEST, which communicates with
some crop growth models.

2.3.2.1 DSSAT Pest Module

The DSSAT PEST module interacts with the crop model to estimate the effects
of pests and pathogens. Although DSSAT has a large variety of crops, the PEST module
only communicates with CROPGRO family of models [37] and the CERES models: Maize,
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sorghum, and millet [38]. The CERES-Wheat model also had a single coupling point added
to the structure to simulate impact of septoria tritici blotch (STB) on wheat leaf area index
and yield [17]. The current PEST module started as a set of independent disease/pest
modules and represent a collaborative work made over the past 40 years. The system was
designed to simulate the likely effects of pests and diseases on crop growth through linear
interpolation between scouting reports. According to pest population and feeding rate, the
values are then converted into daily damage rates, which affect one or more specific plant
parts and, consequently, the crop yield.

The simulation of pest damage using the PEST module requires two input files, a
pest coefficients file (fileP) and time series data file (fileT). The fileP defines which coupling
points the pest will act upon and the respectively damage pattern [12]. Therefore, DSSAT’s
PEST module can estimate the pest damage rate and the specific units (e.g. m2 m−2, g m−2).
On Figure 2 is presented an example of pest coefficient file for soybean (SBGRO047.PST).

Figure 2. Example of pest coefficient file for soybean SBGRO047.PST
(http://github.com/DSSAT/dssat-csm-os).

Pest Number (LN), pest abbreviation (PID), pest name (PNAME) are pest identifiers. Dam-
age characterization method (PCTID) indicates the damage method. Damage characterization
method (PCPID) specify the affected coupling point(s). Feeding rate coefficient (PDCF1) de-
scribes the damage caused by the pest to the crop. Units of feeding rate (UNITS) characterize
the pest damage unit. Source column indicates where the values and the information were col-
lected.

The field-specific file with observed data about crop development (fileT) is used
as data comparison of the measured and simulated results over the course of time [38].
However, when the pest factor is detailed in the experiment, fileT describes the different
pest level or damage observed throughout the entire season. The PEST module then uses
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the pest observed data from the trial to estimate pest damage. A linear interpolation method
is applied to compute pest and/or disease damage between entries in the fileT time series
[39]. Figure 3 is an example of soybean fileT (UFGA7802.SBT).
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Figure 3. Example of time series data file for soybean UFGA7802.SBT
(http://github.com/DSSAT/dssat-csm-od).

(1) TRNO - Treatment number, (2) DATE - Date observed (first two digits represent the year and
last three the day of the year), (3) LAID - Leaf Area Index, (4) SWAD - Stem dry weight (kg/ha),
(5) GWAD - Grain dry weight (kg/ha), (6) LWAD - Leaf dry weight (kg/ha), (7) CWAD - Crop
dry weight (kg/ha), (8) PWAD Pot weight (kg/ha), (9) SHAD - Shell weight (kg/ha), (10) SH%D
- Shelling percentage (seed wt/pod wt*100), (11) SLAD - Specific leaf area (cm2/g), (12) HIAD -
Harvest index (grain/top), (13) CEW6 - 6th instar corn earworm (Helicoverpa Zea).

The pest coupling points link the crop growth model with a pests or diseases model.
This communication allows estimating the damage caused by pests or diseases daily and the
respective effect on crop growth and development. Four pre-determined types of damage
can be selected:

• Daily absolute damage rate (1) - express damage according to the pest population and
their feeding rates.
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• Percent observed damage rate (2) - useful when the exact damage rate is not known.
Turns possible the comparison between a control treatment with a scientific treatment
to obtain the percentage difference of leaf mass between plots, for example.

• Daily percent damage rate (3) - assigned when damage is expressed in daily percent
loss. For example, the daily percentage of leaf loss due to defoliation.

• Daily absolute damage rate with pest competition and food preference effects (4) -
used when there is food competition between pests or the pest causes damage to
more than one coupling point [40].

These damage types can then be applied to a specific plant part of the plant as a
whole. For example, the CROPGRO model includes twenty-three coupling points which pest
damage can affect the simulated leaf area index (LAI), leaf mass, stem mass, root mass,
seed mass (small, large, and mature sizes), shell, the whole/complete plant, assimilates,
necrotic LAI, pod number, and vegetative nodes. All coupling points are presented in Table 1
as well as the respective units, available damage method, and the ID. More details of this
pest coupling approach can be found on the DSSAT v4.5 Crop Model Documentation Vol. 4
[39].
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Table 1. Coupling points and damage types used in CROPGRO crop models (Adapted from
DSSAT v4.5 Crop Model Documentation)[41]
.

Coupling points Units Available Damage Type Coupling Point ID (PCPID)
Leaf area index m2m−2 1,2,3,4 ’LAD’

Leaf mass g m−2 1,2,3,4 ’LMD’
Stem mass g m−2 1,2,3,4 ’SMD’
Root mass g m−2 1,3,4 ’RMD’
Root length cm root/cm−2 soil 1,3,4 ’RLF’

Root length density cm root/cm−3 soil 1,3,4 ’RLV’
Small seed number no.m−2 1,3,4 ’SDNS’
Large seed number no.m−2 1,3,4 ’SDNL’
Mature seed number no.m

2
1,3,4 ’SDNM’

Small seed mass g m−2 1,3,4 ’SDMS’
Large seed mass g m−2 1,3,4 ’SDML’
Mature seed mass g m−2 1,3,4 ’SDMM’
Small shell number no.m−2 1,3,4 ’SHNS’
Large shell number no.m−2 1,3,4 ’SHNL’
Mature shell number no.m−2 1,3,4 ’SHNM’

Small shell mass g m−2 1,3,4 ’SHMS’
Large shell mass g m−2 1,3,4 ’SHML’
Mature shell mass g m−2 1,3,4 ’SHMM’

Whole plant no.m−2 1,3 ’WPD’
Assimilate g m−2 1,3 ’ASM’

Necrotic leaf area index cm2 cm−2 1,3,4 ’PDLA’
Pod numbers %/day 3 ’PPDN’

Vegetative nodes no.nodes 1,3,4 ’VSTG’

2.3.3 Wheat Pest Models

Although the current advances in coupling crop and pest modules, most wheat sim-
ulation models still do not account for pests and diseases’ damage. Some previous studies,
a model named WHEATPEST was developed to estimate the impact of specific pests on
wheat yield through mean temperature and solar radiation, and an array of driving functions
and parameters to simulate production and daily injuries caused by the pest to simulate
the effects on yield loss [15]. A rust model developed in DYMEX population-modeling plat-
form was coupled with the Agricultural Production Systems Simulator (APSIM) in order to
estimate the impact of wheat rust on the green leaf area [4]. Savary et al. [42] developed
a generic wheat disease model (EPIWHEAT) for estimating specifically the potential epi-
demics caused by leaf pathogens of wheat. The climate driven model divides the disease
progression in the host tissue into four categories: healthy, latent, infectious and removed.
These categories detail the monocycle of the disease considering also the expansion rate
of the lesions. In the same year, Caubel et al. [43] coupled the MILA, a model for simulat-
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ing airborne fungal pathogens responsible for foliar diseases, with a wheat version of STICS
(Simulateur mulTIdisciplinaire pour les Cultures Standard) crop model [44] for estimating the
effects of leaf rust based on leaf wetness and temperature. The coupled model measured
the climate change effects on three different scenarios (2.6, 4.5 and 8.5 RCP - Represen-
tative Concentration Pathway), reducing the plant photosynthesis according to the number
of spores and lesions in the leaf surface. An earth system model also was used to predict
the climate change impacts on the spread potential of wheat stem rust [45]. The model es-
timated the emission and transport of the urediniospores for the modern (2000) and future
(2100) following the RCP8.5 scenario and driven by the temperature, light and leaf wetness
at the deposition area. Bregaglio et al. [46] incorporated into five different wheat models
a pest damage mechanism tosimulate four major wheat diseases (brown and yellow rust,
septoria triticiblotch and powdery mildew). Within the DSSAT platform and through the pest
coupling points concept, Roll et al. [17] developed a disease model extension coupled with
the CERES-Wheat model to simulate the septoria tritici blotch impact on leaf area and yield.
Pavan and Fernandes [47] conducted a study to develop a generic disease model that can
be parameterized to simulate the disease cycle of several crop diseases. This model was
dynamically linked to CSM through the PEST subroutines inside the CROPGRO-Soybean
crop module to estimate the effects of a fungal disease on soybean [48].

The recent efforts for simulating pests and disease in wheat crops were broadly
focused on wheat pathogens that reduce leaf area and photosynthesis. However, this project
offers a generic approach for simulating pest damage on any plant part of wheat and a
multiple disease modeling approach for simulating fungal disease effects on yield through
the Generic Disease model [47].

2.4 GENERIC DISEASES MODULE

Pavan and Fernandes [47] developed a generic disease model. The model can
be parameterized to simulate multiple diseases that occur in a given crop. The generic dis-
ease model was structured following the principles for coupling host and disease dynamics
introduced by Berger and Jones [49]. The disease dynamics were handled at the cohort
level [50]. The model was designed to represent in details the disease progress and mimic
the disease life cycle. When simulating leaf spotting disease, for example, each leaf is re-
garded to an individual cohort of new leaf tissue resulted from the simulated growth and it is
assumed as a potential infection site. The disease onset is resulted of airborne initial inocu-
lum locally or externally produced. Under favorable environmental conditions infection takes
place forming an invisible lesion. At the end of latent period, the lesion becomes visible or
infectious and enlarge with time. At the infectious stage, a proportion of spores produced
are distributed at three scales of spatial hierarchy [51]. The rate of infection of a potential
site is computed according to ratios of autodeposition, allo-leaf-deposition and allo-plant-



22

deposition. The model then estimates the total diseased area based on leaf area bearing
lesions and leaf area infected but with non-visible symptoms. The daily leaf area estimated
by the model is reduced according to the diseased area calculated by the generic model.
This approach directly affects plant photosynthesis and, consequently, the growth and final
grain yield. On this study, the Generic Disease Model was parameterized to simulate the
disease cycles of three major wheat diseases: powdery mildew (Blumeria graminis f. sp.
tritici), tan spot (Pyrenophora tritici-repentis), and fusarium head blight (Gibberella zeae).
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3. COUPLING PESTS AND DISEASES WITH A WHEAT CROP
SIMULATION MODEL

3.1 ABSTRACT

Wheat is one of the most important global staple crops and is affected by many
different pests and diseases. Depending on the pest and disease intensity, these can cause
significant economic losses and even crop failure. Pest models can assist in decision-making
and help reduce crop losses. Most of the current wheat simulation models account for
abiotic stresses such as drought and nutrients, but they do not account for biotic stresses
caused by pests and disease. The objective of this study was to couple a pest module to the
Cropping System Model (CSM)-NWheat model. Coupling points were integrated into the
CSM-NWheat model for applying daily damage to all plant components, including leaves,
stems, roots, and grains; the whole plant, and to the assimilate supply. The coupled model
was tested by simulating a wheat crop with virtual damage levels applied at each coupling
point. Measured foliar damage caused by tan spot (Pyrenophora tritici-repentis) was also
simulated. Compared with the observed data, the modified model accurately estimated the
reduction in leaf area growth and yield loss. With the incorporation of the pest module into
the the CSM-NWheat model, it can now predict the potential impact of insect pests and
diseases on wheat growth and development and ultimately yield.

3.2 INTRODUCTION

Wheat (Triticum aestivum L.) is one of the most important cereals in the world,
produced both as a human food and as a feed for livestock. Demand for wheat is expected
to increase with the rise in the global population [28]. Modern wheat cultivars developed by
private and public wheat breeding programs often exhibit extensive geographical adaptation
[1]. Depending on the mega-environment, wheat yield and quality are constantly at risk due
to numerous insect pests and diseases [52, 53]. The rapid evolution of wheat agrosystems
in recent decades has led to a large variation and variability of crop losses from insect pests
and plant pathogens [54, 55]). They are estimated to be responsible for 10.1 to 28.1% of
global production losses [2].

With computational advancements during the past 30 years, decision support sys-
tems have been used in agriculture to help evaluate appropriate farm management tech-
nologies and to assist with complex decision-making [56, 34, 14, 57]. These agricultural
risk assessment tools incorporate growth models that simulate crop development and yield
through mathematical equations as a function of weather conditions, soil characteristics,
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and crop management. The Decision Support System for Agrotechnology Transfer (DSSAT)
computes the soil-plant-atmosphere dynamics to predict crop development and can help
decision makers with selecting optimal management responses [36, 14]. The main mod-
eling engine of DSSAT, the Cropping System Model (CSM), simulates yield for more than
42 crops and has three different modules for simulating wheat growth and development:
CROPSIM-Wheat [18], CERES-Wheat [58], and NWheat, the newest wheat crop growth
module incorporated in CSM [19].

Crop growth simulators have the potential to quantify and predict the effects of pests
and pathogens in crop growth [57, 59, 60]. However, the risk assessments of plant pests and
pathogens are usually ignored in crop simulation models [5]. In the early 1980s, attempts to
evaluate pest impact on crop growth started when [61] developed Soybean Integrated Crop
Management (SICM) coupled to a soybean crop model called SOYGRO [8]. This coupled
system simulates the velvet-bean caterpillar population dynamics and pest-management
strategies. At the same time, Boote et al. [10] classified and categorized the impact of insect
pests and diseases on the type of damage they cause in plants. Boote et al. [10] identified
seven pest damage mechanisms: a stand reducer, a photosynthetic rate reducer, a leaf
senescence accelerator, a light stealer, an assimilate sapper, a tissue eater or consumer,
and a turgor reducer, as a general method to incorporate the impact of pests and diseases
into crop models. Jones et al. [11] extended the SICM pest damage modeling capabilities by
estimating the effects of corn earworm (Heliothis zea) and southern green stink bug (Nezara
viridula) on soybean.

In the early 1990s, Batchelor et al. [12] developed a general framework for applying
pest damage coupled with the SOYGRO and PNUTGRO, a peanut crop model [62] through
pest linkages, called coupling points, associated with rate and state variables for which pest
damage can be expressed. This framework uses field pest-scouting data to interpolate
damage between scouting dates, thus predicting crop losses due to pests and pathogens.
Pinnschmidt et al. [13] estimated pest and disease effects on rice crops using the CERES-
Rice module and a similar pest framework, although it was never included in the official
CSM source code. These attempts to couple crop models with pests and diseases would
later become a generic pest framework named PEST as part of the CSM model of DSSAT
[41]. In a recent effort, Magarey et al. [16] created a simple generic infection model to
predict infection periods of fungal foliar pathogens based on weather conditions. Pavan and
Fernandes [47] developed a generic disease model that can be parameterized to simulate
the disease cycle of several crop diseases. This model was dynamically linked to CSM
through the PEST subroutines inside the CROPGRO-Soybean crop module to estimate the
effects of a fungal disease on soybean [48]. Batchelor et al. [63] simulated the impact of leaf
necrosis on maize yield due to lethal maize necrosis (MLN) using the PEST module coupled
with CERES-Maize, a maize crop growth module of CSM.
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Although the current advances in coupling crop and pest modules, most dynamic
wheat simulation models still do not account for pests and diseases’ damage. Willocquet et
al. [15] developed a model named WHEATPEST for estimating the effects of specific pests
and diseases on wheat yield. This model uses mean temperature and solar radiation, and an
array of driving functions and parameters to simulate production and daily injuries caused by
the pest to simulate the effects on yield loss. Whish et al. [4] estimated the impact of wheat
rust on the green leaf area of wheat crops by coupling the Agricultural Production Systems
Simulator (APSIM) with a rust model developed in the DYMEX population-modeling platform.
Common wheat diseases such as rusts, blotches, and scab [64], currently contribute to yield
losses, yet, wheat crop modules have not been dynamically coupled with a generic pest and
disease framework. Understanding the biotic impact of pests and disease on wheat yield and
development would be a fundamental step towards predictive agriculture and would provide
useful predictions for real-farm conditions [5]. The objectives of this study were, therefore,
to implement, the pest and disease coupling points in a dynamic wheat module and couple
it to the PEST generic framework; to conduct a sensitivity analysis of the dynamic coupled
model to evaluate its response to virtual damage levels applied for each coupling point; to
evaluate its performance for a real-world case study.

3.3 MATERIALS AND METHODS

3.3.1 Applying pest and disease damage in crop modules

The estimation of the impact of pests and pathogens in CSM requires commu-
nication between a crop module and another module that handles disease damage, here
referred to as the PEST module. The communication links are named as coupling points
and can reduce the daily state and rate variables, such as leaf, stem, root, seed growth, and
several others, according to the source type of potential damage [10].

In CSM, pest damage can be applied using several methods [12, 10, 65]. Two
damage methods were selected to simulate the effects of pests on wheat:

1- Absolute damage (daily rate as amount/day) - exact damage based on the
recorded pest population and the pest feeding rate.

2- Observed damage (daily rate as %/day) – removal of a certain amount of mass
or area as a percentage.

The coupling points were implemented in the CSM-NWheat model, using both the
absolute and observed damage rate methods. The incorporated coupling points can apply
daily damage for the simulated leaf area index (LAI), leaf mass, stem mass, root mass, seed
mass, necrotic LAI, assimilates, and the whole/complete plant (Table 2). Changes in LAI,
leaf, stem, root, seed mass, assimilate, and the whole plant are the coupling points based
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on the CERES-Maize model [41] to affect the respective CSM-NWheat state variables. The
necrotic LAI was implemented based on the CROPGRO model [37].

Table 2. Coupling points incorporated in the CSM-NWheat module.

Pest IDa Coupling Point
Name PCPIDb Damage

Typec
Module Damage

Variabled

The State Variable in the
Module that the Variablee

Damage is Applied to

ALAD
Leaf area index,
m2m−2day−1 LAD 1 LAIDOT,

m2m−2day−1
LAI,
m2m−2

PL_LA,
mm2 plant−1PLAD

Leaf area index,
%day−1 2

ALMD
Leaf mass,
gm−2day−1 LMD 1 WLIDOT,

gm−2day−1
PL_NIT (leaf_part),
g[N]m−2

PLANTWT (leaf_part),
gplant−1PLMD

Leaf mass,
%day−1 2

ASMD
Stem mass,
gm−2day−1 SMD 1 WSIDOT,

gm−2day−1
PL_NIT (stem_part),
g[N]m−2

PLANTWT (stem_part),
gplant−1PSMD

Stem mass,
%day−1 2

ARTD
Root mass,
gm−2day−1 RMD 1 WRIDOT,

gm−2day−1
PL_NIT (root_part),
g[N]m−2

PLANTWT (root_part),
gplant−1PRTD

Root mass,
%day−1 2

ASDD
Seed mass,
gm−2day−1 SDM 1 SWIDOT,

gm−2day−1
PL_NIT (grain_part),
g[N]m−2

PLANTWT (grain_part),
gplant−1

GPP, No.plant−1PSDD
Seed mass,
%day−1 2

PNLA
Necrotic leaf area
index,
%day−1

PDLA 2
DISLA,

cm2m−2day−1 AREAH, cm2m−2

PASM
Assimilate,
%day−1 ASM 2

ASMDOT,
gplant−1 PCARBO, gplant−1

PWPD
Whole plant,
%day−1 PPLD 2

PPLTD,
%m−2day−1 PLTPOP, plantsm−2
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aPest Identification codes for: actual leaf area destroyed (ALAD), percentage of leaf area de-
stroyed (PLAD), actual leaf mass destroyed (ALMD), percentage of leaf mass destroyed (PLMD),
actual stem mass destroyed (ASMD), percentage of stem mass destroyed (PSMD), actual root
mass destroyed (ARTD), percentage of root mass destroyed (PRTD), actual seed mass destroyed
(ASDD), percentage of seed mass destroyed (PSDD), percentage of necrotic leaf area (PNLA),
percentage of assimilate reduction (PASM), percentage of plants destroyed (PWPD).
bCoupling point identification codes for: leaf area destroyed (LAD), leaf mass destroyed (LMD),
stem mass destroyed (SMD), root mass destroyed (RMD), seed mass destroyed (SDM), plant
diseased leaf area (PDLA), reduction in photosynthesis (ASM), plants destroyed (PPLTD).
cDamage methods for daily absolute damage rate (1), daily percent damage (2).
dDamage variables for applying daily LAI (LAIDOT), leaf mass damage (WLIDOT), (WSIDOT),
root mass damage, (WRIDOT), stem mass damage (SWIDOT), diseased leaf area damage
(DISLA), assimilative damage (ASMDOT), plant population damage (PPLTD).
eModel state variables that are affected on a daily basis by pest damage variables:
Leaf Area Index (LAI) plant leaf area (PL_LA), nitrogen in leaf (PL_NIT(leaf_part)),
leaf weight (PLANT_WT(leaf_part)), nitrogen in stem (PL_NIT(stem_part)), stem
weight (PLANT_WT(stem_part)), nitrogen in seed (PL_NIT(seed_part)), seed weight
(PLANT_WT(seed_part)), grain number (GPP), healthy leaf area index (AREAH), potential
dry matter production (PCARBO), plant population (PLTPOP).

The pest coefficient file (FileP) defines the coupling points with the crop module
for each individual pest and disease and the associated damage pattern [12]. The actual
observed pest or disease incidence observed through scouting reports can be defined in
the time series data file (FileT), which is read and converted into daily damage using linear
interpolation. This file also contains observed data for comparison with the simulation re-
sults [41]. Alternatively, dynamic information about the actual pest or disease population or
incidence can be provided through linkage of the crop model with a dynamic pest model or
incorporation of dynamic pest modules into the crop model [48].

When pest or pathogens causes damage to a specific plant part weight, the state
variable corresponding to the daily weight of that plant part is reduced by:

P(x)t = P(x)∗t − (
Damt

Popt
) (1)

Where P(x)t is the state variable of a specific plant part x on day t, after damage has
been applied, P(x)∗t is the state variable of a specific plant part x on day t, before applying
pest damage, Damt is the total amount of damage applied to the state variable on day t and
Popt is the plant population on day t.

The nitrogen available for the specific plant part is reduced according to the damage
applied:

N(x)t = N(x)∗t − (
N(x)∗t × (Damt ÷Popt)

P(x)t
) (2)

Where N(x)t is the nitrogen available on a specific plant part x on day t, after dam-
age has been applied and N(x)∗t is the nitrogen available for a specific plant component x on
day t, before applying pest damage.
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The coupling points for leaf mass, stem mass, root mass and seed mass use these
equations to apply pest damage to a respective plant part with the corresponding damage
variable. The coupling point for LAI computes the daily leaf area damage (LAIDOT) caused
by pests, which is subtracted from the daily LAI state variable (LAI) by:

LAIt = LAI∗t − (
LAIDOT

10000
) (3)

Where LAIt is the LAI (m2m−2) on day t, after damage has been applied, LAI∗t is the
LAI (m2m−2) on day t, before applying pest damage, and LAIDOT is the leaf area consumed
by pests (cm2m−2day−1).

When a pest causes damage to the wheat grains, in addition to reducing grain
weight, the grain number per plant (GPP) is adjusted in proportion to the seed mass loss:

GPPt =GPP∗t − (
S WIDOT ÷PLT POP

S DWTt
) (4)

Where GPPt is the grain number (no.plant−1) on day t, after damage has been
applied, GPP∗t is the grain number (no. plant−1) on day t, before applying pest damage,
S WIDOT is the seed loss due to pests (gm−2day−1), PLT POP is the plant population (plantsm−2)
and S DWTt is the seed weight on day t, after damage has been applied, (gplant−1).

Plant necrosis due to diseases affects the canopy photosynthesis potential on day
t by reducing the healthy LAI:

AREAHt = (LAI∗t ×10000)−DIS LA (5)

Where AREAHt is the area of healthy leaves (cm2m−2) on day t, after damage has
been applied, and DIS LA is diseased leaf area (cm2m−2day−1).

Sap-sucking pests cause a reduction in plant development by removing soluble
assimilates from the host cells [10]. The simulation of these pests in CSM-NWheat is done
by reducing the potential daily dry matter production:

PCARBOt = PCARBO∗t −AS MDOT (6)

Where PCARBOt is the potential dry matter production (gplant−1day−1) on day t, af-
ter damage has been applied, PCARBO∗t is the potential dry matter production (gplant−1day−1)
on day t, before damage was applied and AS MDOT is the reduction in photosynthesis due
to pests (gm−2day−1).

If pest or disease damage compromises the overall plant structure, the plant num-
ber is reduced according to the percentage of plants destroyed on day t (PPLTD):
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PLT POPt = PLT POP∗t − (
PLT POP∗t ×PPLT D

100
) (7)

Where PLT POPt is the plant population (plantsm−2) on day t, after damage has
been applied, PLT POP∗t is the plant population (plantsm−2) on day t, before applying pest
damage and PPLTD is the percent of plants destroyed, %m−2day−1).

The LAI state variable is adjusted in proportion to the amount of plants destroyed:

LAIt = LAI∗t − (
PLT POPt

100
) (8)

3.3.2 Simulating the impact of pests on wheat yield

The time series file (FileT) of a wheat experiment conducted in Kansas, USA in
1981 and included in DSSAT (KSAS8101.WHX, treatment 2 - Dryland; 60 kg N ha−1) was
adapted to serve as a proof of concept and to study the capability of the newly incorporated
coupling points to simulate the impact of wheat diseases and insect pests. Hypothetical
damage was applied for each coupling point according to the specific pest or disease of
various studies (Table 3) to simulate the impact of leaf defoliation on yield loss.

Table 3. Observed pest and disease damage recorded in various studies. The damage rates
(%) reported in these studies were used to evaluate the functionality of the coupling points
for wheat.

Coupling Point Pest/Disease Damage Rate Reference

Leaf area index
Corn Earworm
(Heliothis zea) 12% - 25%d Batchelor et al.

(1989)

Leaf mass
Cotton Bollworm
(Helicoverpa armigera) 18.5% - 28% y Rogers et al.

(2010)

Stem mass
Stem Rust
(Puccinia graminis) 10% - 45% y Loughman et al.

(2005)

Root mass
Nematodes
(Pratylenchus thornei) 12% - 15% y May et al.

(2016)

Seed mass
Fusarium head blight
(Fusarium Graminearum) 18.6% y Reis and Carmona

(2013)
Necrotic leaf
area index

Tan Spot
(Pyrenophora tritici-repentis) 9% - 29% y Bhathal et al.

(2003)

Assimilate
Aphids
(Sitobion avenae) 16% y Rabbinge et al.

(1984)
d Defoliation
y Yield
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3.3.3 Study case

An on-farm experiment was conducted in 2016 in an area of approximately one ha
in the middle of a commercial-sized agricultural field in Carazinho, Rio Grande do Sul - Brazil
(28 °13’46 "S, 52 °54’32" W and 517 m). The farm had adopted a soybean–wheat crop rota-
tion under no-tillage. Tan spot [28], a fungal disease caused by Pyrenophora tritici-repentis,
occurred naturally in this field. The experimental design was a randomized complete block
design with four replications. The experimental plots were sufficiently large (20 m x100 m)
to accommodate regular farm machinery. Seeds were planted on June 13 at a row spacing
of 17 cm, and the final plant population was 376 plants m−2. The treatments were disease
control with fungicide and no disease control. Opera, a fungicide with protective and sys-
temic properties, was used for controlling tan spot. The fungicide rate was 1.5 l ha-1 sprayed
at the tillering, booting, and anthesis phenological stages. The spring wheat cultivar was
BRS Parrudo [32]. Fertilizer was applied based on recommendations from soil analysis.
Approximately 40 days after planting, urea was broadcast at a rate of 80 kg N ha-1.

Starting on August 2, 2016, ten plants from each plot were collected at seven-day
intervals. The plants were cut close to the ground and packed in plastic bags and transported
to the laboratory. Upon arrival, the leaves were separated from the stem and fixed on an A4
white paper background, with transparent tape. Images from the leaves were obtained with
a CCD photographic scanner.

An artificial neural network was developed using supervised classification through
the the Waikato Environment for Knowledge Analysis (WEKA) [66] to classify and measure
the damage caused by tan spot in wheat leaves. The algorithm was interactively trained to
classify pixels in three classes: healthy, necrosis, and background. From binary images, the
obtained values were: image area (I), background area (BK), necrosis area (N), and healthy
area (H). The leaf area (L) was calculated by subtracting the background area (BK) from the
image area (I). Then, the proportion of necrosis (K) was obtained by K = N/L.

Environmental variables were monitored using a micrometeorological tower installed
in the center of the experimental area. Sensors attached to the tower measured relative hu-
midity (%), temperature (oC), global incident solar radiation (MJ m−2 day-1), and rainfall (mm).
All sensors were connected to a datalogger with channel multiplexers, and readings were
taken every 30 seconds, with averages and totals stored every 15 minutes for the duration
of the wheat growing season.
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3.4 RESULTS AND DISCUSSION

3.4.1 Coupling points response to hypothetical damage

Hypothetical pest damage was applied to experiment KSAS8101.WHX, treatment
2, a wheat experiment included in the DSSAT library, to primarily identify the reliability and
functionality of the coupling points in CSM-NWheat. In this simulation, the attainable yield
at 248 days after planting with no disease damage was 3,688 kg ha-1, leaf weight 1,348
kg ha-1, stem weight 2317 kg ha-1, root weight 1,596 kg ha-1, total canopy weight 8,979 kg
ha-1, maximum LAI 2.7 m2 m-2 and grain number 12,413 no. m-2. The damage levels were
applied based on Table 2 and expressed as part of the time series data file (FileT).

When damage equivalent to 25% defoliation was imposed on the LAI state variable
and interpolated during mid-late season, between 169 and 214 days after planting, final yield
decreased to 3,027 kg ha-1 (-17.9%), and leaf weight decreased to 1,018 kg ha-1 (-24.5%).
For leaf mass, damage equivalent to 20% defoliation during the mid-season between 149-
178 days after planting, resulted in a yield of 2,910 kg ha-1 (-21.1%) and a leaf mass of 889
kg ha-1 (-34.0%). Damage equivalent to a 17% of stem mass loss during the late season
between 193 and 227 days after planting, resulted in a grain yield of 3,129 kg ha-1 (-15.1%)
and a stem mass of 934 kg ha-1 (-59.6%). Damage equivalent to a 15% loss in the roots
during the early-mid season between 56 and 167 days after planting, resulted in a grain yield
of 3,177 kg ha-1 (-13.9%) and a root mass of 1,217 kg ha-1 (-23.7%) (Figure 4).
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Figure 4. Response of the coupled NWheat and PEST modules to pest and disease im-
pact as presented in Table 2 in comparison to the attainable simulations. Simulated leaf
weight with hypothetical damage applied to LAI (a) and leaf mass (b); simulated root weight
with hypothetical damage applied to root mass (c); simulated stem weight with hypothetical
damage applied to stem mass (d); Simulated yield response to the individual instances of
hypothetical damage applied to the LAI, leaf mass, root mass and stem mass state variables
(e).

Leaf area necrosis virtual damage equivalent to 20% of pest necrosis was applied
late during the season between 192 and 247 days after planting, resulting in a grain yield of
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3,040 kg ha-1 (-17.6%), and a canopy weight of 8,249 kg ha-1 (-8.1%). Assimilate damage
equivalent to a 17% assimilate supply loss late during the season between 203 and 241
days after planting, resulted in a grain yield of 3,093 kg ha-1 (-16.1%) and a canopy weight
of 8,079 (-10.0%). Hypothetical damage equivalent to a 18% seed mass loss during the late
season between 225 and 243 days after planting, resulted in a grain yield of 2,959 kg ha-1

(-19.8%) and a total number of grains of 9,192 no. m-2 (-26.0%) (Figure 5).

Figure 5. Response of coupled NWheat and PEST modules to pest and disease impact as
presented in Table 2. Simulated canopy weight with hypothetical necrosis damage applied
to LAI (a); Simulated canopy weight with hypothetical damage applied to the crop assimilate
supplies (b); Simulated grain number with hypothetical damage applied to seed mass (c);
Simulated yield response to the individual instances of hypothetical damage applied to the
assimilate supplies, leaf area due to necrosis and seed mass state variable (d).

The model’s response when individual plants are removed due to pests and pathogens
was analyzed by applying hypothetical damage levels that reduced the plant population.
Damage equivalent to 5%, 8%, and 10% of plants destroyed were applied as daily rate dam-
age using the time series data file (FileT) during the mid-growing season between 169 and
191 days after planting. A 5% reduction in the plant population resulted in a yield loss of
1,088 kg ha-1 (-29.5%) and a maximum LAI of 2.2 m2m-2 (-18.5%). An 8% reduction in the
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plant population resulted in a yield loss of 1,668 kg ha-1 (-45.2%) and a maximum LAI of 2.2
m2m-2 (-18.5%). Lastly, a 10% reduction in the plant population resulted in a yield loss of
1,994 kg ha-1 (-54.1%) and a maximum LAI of 2.1 m2m-2 (-22.2%) (Figure 6).

Figure 6. Sensitivity of the CSM-NWheat module coupled with the disease module to simu-
late the effects on LAI (a) and yield (b) when 5%, 8% and 10% of the plants are removed.

This proof of concept shows the potential of a coupled pest module with a wheat
module to dynamically simulate different pest and disease infection scenarios. The coupled
model was able to simulate the yield and leaf area losses due to damage caused by multi-
ple pests and diseases on different plant components of wheat based on studies reported
in the literature (Table 2). The damage levels were implemented in one of the crop model
input files (FileT) following the reported chronological occurrence pattern of each pest, as
reported crop losses in general depend on when a given pest or disease damage occurs.
The advantage of using coupling points is that they are not bound to specific pests or dis-
eases. Therefore, this approach can be used to simulate the impact of different insect pests
and diseases on wheat growth and development as long as they have the same coupling
points as listed in Table 1. Even cases with severe pest damage that kills the entire plant
can be simulated.

3.4.2 Field experiment

Tan spot is caused by the fungus Pyrenophora tritici-repentis and is also known as
yellow leaf spot or yellow leaf blotch. The ascospores or conidia of this fungus infects the
host cells and induces necrosis and chlorosis symptoms on wheat leaves [28]. It starts as a
small tan spot, destroying the living tissue and developing into lesions with a brown spot in
the center and yellow borders [32]. Temperature and free moisture on the leaf surface are
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critical environmental factors for tan spot infection [67]. This pathogen reduces the photo-
synthetic area of leaves, which results in substantial losses in both yield and grain quality,
including reduced grain fill, a smaller number of kernels per head, and kernel shriveling [68].
Natural infection of tan spot disease occurred in the wheat field experiment that was con-
ducted in 2016 in Carazinho, Rio Grande do Sul, Brazil. The observed yield in the control
treatment with no tan spot damage was 3,915 kg ha-1 compared to 3,750 kg ha-1 in the plots
where tan spot was present. On average, there was a reduction of 4.2% in grain yield due
to tan spot infection. Throughout the entire experiment, the disease severity was expressed
as the mean proportion of necrosis measured at each measurement date (Figure 7). These
pest data of the scouting reports were entered in the time-series data file (FileT) to simu-
late the effect of tan spot observed on the wheat field. The damage was applied using the
observed damage method (% as a daily rate) and the necrotic LAI coupling point (Table 2).

Figure 7. Sensitivity of the CSM-NWheat module coupled with the disease module to simu-
late the effects on LAI (a) and yield (b) when 5%, 8% and 10% of the plants are removed.

Simulated wheat yield with the new coupled NWheat and PEST modules for the
treatment with no disease was 4,414 kg ha-1, while the yield simulated for the treatment
affected by tan spot was 4,207 kg ha-1 due to a reduction in leaf mass and LAI. This cor-
responds to a reduction in yield of 4.6% due to tan spot infection (Figure 8). Overall, the
CSM-NWheat model predicted higher grain yield than the yield level that was measured in
the field experiment. However, the yield loss due to tan spot infection predicted by the pest-
coupled model was similar to the percentage yield loss observed in the field experiment with
a slight overestimation of a 0.4% yield loss. The results of this primarily analysis indicates
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that the newly coupled model is capable to simulate the potential impact of disease damage
during wheat growth and development.

Figure 8. Natural occurring tan spot severity measured in wheat plots without fungicide
applications during an on-farm experiment conducted in 2016 in Carazinho, Rio Grande do
Sul, Brazil.

3.5 SUMMARY AND CONCLUSIONS

The communication links created to couple the CSM-NWheat crop growth model to
the PEST module of DSSAT allow daily pest interaction with the growth and development of
leaf, stem, seed, root, and the photosynthesis rate of the wheat model. The damage routines
simulated wheat defoliation and yield loss according to different types of pests and diseases.
A case study was used to simulate tan spot (Pyrenophora tritici-repentis) infection on wheat,
and the results were compared to those observed in a field experiment. The coupling points
gave the model flexibility to predict crop growth in combination with pest damage levels.
Although the average leaf area loss due to tan spot infection observed in the study case
was less than 5%, overall, the model had a similar response to the measured data. The



37

sensitivity analysis indicated the capability of the model coupled with the PEST module to
predict damage similar to what was observed in the field experiments.

The newly coupled model can be applied for simulating the potential impact of
insect pest and disease damage, and it is not limited to a specific pest or crop condition.
This allows for the simulation of different pest scenarios for wheat following the chronological
occurrence pattern of a given pest or disease and mimics the effects of pest damage on crop
development and predict yield loss. Future research should include more field experimental
data from a range of environments to evaluate the model’s capability to estimate disease
and pest effects on wheat for different management practices and environmental conditions.
This research extends the functionalities of the CSM-NWheat crop model and expands its
potential applications to address pest and disease-related issues occurring in real-world
scenarios. This is the first wheat model in the DSSAT crop modeling ecosystem [14] that
has been coupled with the pest module of DSSAT. It will allow now for the dynamic simulation
of both biotic and abiotic stresses on wheat growth and development and ultimately yield.
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4. ASSESSMENT OF YIELD DAMAGE CAUSED BY DISEASES IN
WHEAT: A SIMULATION APPROACH USING THE NWHEAT MODEL

4.1 ABSTRACT

Simulating the damaging effects of pests and diseases on crop yield is a crucial
step for predictive agriculture. In this study, we developed and evaluated an approach to
simulate the damaging effects of powdery mildew (Blumeria graminis f. sp. tritici), tan spot
(Pyrenophora tritici-repentis) and fusarium head blight (Gibberella zeae) on wheat (Triticum
aestivum L.) yield using the CSM-NWheat model. Three independent disease models, each
simulating one wheat disease, were coupled with the wheat crop model using parallel com-
munication (MPI standards). The disease components inflict daily disease damage through
specific pest coupling points if the environmental conditions are favorable for infection. The
simulated powdery mildew and tan spot damage were inflicted on wheat photosynthesis
rate and leaf area index. Fusarium head blight applied damage upon grain yield. This ap-
proach was tested on a two-year dataset collected in Brazil, where these fungal diseases
naturally occurred throughout the experiments. The coupled model had consistent results
compared with the observed data and simulated well the impact on grain yield. This multi-
model approach using MPI showed the positive effect of coupling multiple specific models to
accurately estimate pest and disease damage.

4.2 INTRODUCTION

The maximum yield of plants, determined by their genetic potential, is seldom
achieved because factors such as inadequate water or nutrients, adverse climatic condi-
tions, insect and disease damage will limit growth at some stage. Wheat (Triticum aestivum
L.) is one of the world’s main staple crops, which provides around 20% of daily protein and
calories [69]. Wheat is generally affected by various fungal diseases that are considered
harmful to the economy for their potential to damage crops and reduce income. Even with
the current disease control methods, it has been estimated an actual yield loss of 13% [52].

The information needs for agricultural decision-making at all levels are increasing
rapidly due to increased demands for agricultural products and increased pressures on land,
water, and other natural resources. Over time science has been trying to anticipate phe-
nomena and prevent epidemics from minimizing risk and increasing productivity. Decision
support systems have been used for the last decades to help farmers and researchers in
decision-making. These systems incorporate crop growth models that simulate crop growth
and development through mathematical equations as a function of weather conditions, soil
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characteristics, and crop management. These tools help create scenarios, identify unusual
situations, and generate alerts, usually based on historical data. The Decision Support Sys-
tem for Agrotechnology Transfer (DSSAT) predicts crop growth by computing the soil-plant-
atmosphere dynamics and assisting in the decision making [36, 14]. The Cropping System
Model of DSSAT, the main engine of the system, can simulate crop growth for over forty-two
crops and has three different modules for simulating wheat development: CROPSIM-Wheat
[18], CERES-Wheat [58], and NWheat [19].

These models are available for the wider community and provide growth and crop
production in the following levels: potential, attainable, or actual production. The models
predict potential yield as a function of site-specific weather (solar radiation, temperature,
CO2, and day length), but assuming no limitations from pests/diseases. Attainable produc-
tion is predicted where constraints from water and fertility are simulated. Actual production
is what farmers achieve and includes limiting factors in the field, such as soil fertility and
pest-disease aspects. However, most crop models operate at the attainable yield level (con-
sidering water and N) and do not account for pest and disease effects, either mechanistically
or via post-model. Failure to account for the impact of insect pests and diseases when sim-
ulating crop growth is currently one of the major limitations of most crop simulation models.
In the early attempts to study crop loss due to insect pests and disease infection, Rabbinge
and Rijsdijk [70] and Boote et al. [10] classified the injury mechanisms and the effects on
plant morphology or physiology. Boote et al. [10] categorized the pest influence on the plant
carbon flow according to the types of damage they do in the host plant.

This concept is present in the Cropping Modeling System (CSM) of DSSAT to im-
pact crop growth and development through pest linkages named coupling points [10, 12].
These communication structures assess pests and diseases potential impacts on crop pro-
duction using unique model variables whose daily-changing values represent pest and dis-
ease damage to crop organs or growth and development processes. Examples of coupling
point variables include leaf mass or area, stem mass, root mass, root length, and seed mass
or number, all of which might be negatively impacted by pests and diseases. Batchelor et
al. [12] developed a general framework allowing the user to input field observations and
scouting data on insect damage, disease severity, and physical damage to plants or plant
components (e.g., grains or leaves). This module simulates the likely effects of those pests
and diseases on crop growth and economic yield using linear interpolation between scouting
reports to estimate the daily impact of a specific plant part. This framework and other at-
tempts to couple pests and diseases with crop models [13] would become the PEST module,
a generic pest framework of the DSSAT crop modeling platform [14].

Recently, the CERES-Wheat was coupled with a disease model for the simulation
of Septoria tritici blotch in wheat [17]. CSM-CERES-Beet model had coupling points added
to estimate the Cercospora leaf spot disease effects on sugar beet yield [71]. Ferreira et al.
[72] also implemented pest and disease coupling points within the CSM-NWheat, a wheat
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crop model, to estimate pest and disease effects on crop growth using the DSSAT’s PEST
module. However, coupling independent modules that simulate the entire cycle of a pest
or disease to crop growth models can simplify the representation of biotic stress and the
impact on crop growth [5]. A well-known example of this approach was a simple generic
infection model based on weather conditions developed to predict fungal plant pathogens
[16]. Pavan and Fernandes [47] also demonstrated this concept with the Generic Disease
Model (GDM), which can be parameterized to simulate multiple diseases in a given crop.
This approach, however, has not been applied to simulate pests and disease damage on
wheat. The objectives of the present study were 1) to parameterize the Generic Disease
Model to mimic the fungal life cycle of Blumeria graminis f. sp. tritici, Pyrenophora tritici-
repentis and Gibberella zeae, the causing agents of powdery mildew, tan spot, and fusarium
head blight of wheat, respectively, 2) dynamically link these models to the CSM-NWheat crop
model through the coupling points, and 3) to predict the impact of these fungal diseases on
wheat yield.

4.3 MATERIAL AND METHODS

4.3.1 Crop and disease modeling

Recently, Ferreira et al. [72] developed a disease extension inside the CSM-
NWheat for simulating pest and disease damage in wheat. The implemented pest and
disease subroutines allowed the linkage between the crop model and the Generic Disease
Model [47]. The model was parameterized to simulate the disease cycles of powdery mildew
(PM), tan spot (TS) and fusarium head blight (FHB). Powdery mildew in wheat is a disease
that affects leaves and stems, producing white powdery spots that reduce the efficiency of
photosynthesis [31]. The spores infect the host cells through penetration pegs causing the
plant to shunt resources to the fungus. Tan spot, also known as yellow leaf spot or yellow
leaf blotch induces necrosis and chlorosis symptoms on wheat leaves [28]. The fungus de-
stroys the living tissue expanding into lens-shaped lesions with a brown spot in the center
and yellow borders [32]. Fusarium head blight, also known as gibberella or scab, infects
the wheat grains and produces a mycotoxin named deoxynivalenol (DON) causing tissue
necrosis inside the kernels [25]. This can lead to lightweight seeds and reduced kernel set
and its contamination can have risk to human and animal health [73]. The parameters for
the disease models were extracted from the literature or empirically set by wheat diseases
experts. Multiple independent instances of the GDM were created to predict the individual
impact of the diseases on wheat growth. Each disease component inflicts daily disease
damage through damage variables if the conditions are favorable for infection.

Favorable conditions for infection for these fungi diseases are climates with moder-
ate temperatures, high relative humidity and free moisture in the plant’s surface.
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Weather variables such as temperature, relative humidity, rainfall and solar radia-
tion provided on an hourly basis governs the disease’s progress. The generic disease model
was structured following the principles for coupling host and disease dynamics introduced by
Berger and Jones [49]. Disease dynamics were handled at the cohort level [50]. In the wheat
model, each leaf/seed was regarded as an individual cohort of new tissue resulting from sim-
ulated growth and it was assumed to be a potential infection site. Disease onset resulted
from airborne initial inoculum locally or externally produced. Under favorable environmental
conditions, infection takes place forming an invisible lesion. At the end of the latent period,
the lesion becomes visible or infectious and enlarges with time. At the infectious stage, a
proportion of spores produced are distributed at three scales of spatial hierarchy [51]. The
rate of infection of a potential site is computed according to ratios of autodeposition, allo-leaf-
deposition and allo-plant-deposition. It was assumed that the diseased area resulted from
the totalization of the leaf area bearing lesions and leaf area infected but with non-visible
symptoms. The diseased area is then used to update the leaf area variable estimated by
the crop model which will directly impact the plant photosynthesis, growth rate and, conse-
quently, the final grain yield. This method was used to simulate powdery mildew and tan spot
on wheat. The simulated fusarium head blight, affected the seed state variable of the model.
The FHB daily spore production was computed using the GibSim [74]. This model assumes
the Gibberella zeae inoculum is present in the surface of the soil residue and the airbourne
propagules spread in the environment using a function for spore dispersion and deposition
which estimates the daily density of the spore cloud. The number of spores was translated
into damage according to the infection rate. The other two components assume sporulative
powdery mildew and tan spot lesions are present in the environment in which prediction is
made and estimates the rate of conidiophore development as a function of temperature and
relative humidity.

The communication between models was established using OpenMPI, a Message
Passing Interface (MPI) library for parallel computing [75, 48]. MPI was adopted as a stan-
dard method of communication due to the availability and portability of libraries for multiple
languages. The Multiple Instruction, Multiple Data (MIMD) approach was used to achieve
parallelism and information exchange in daily steps throughout the simulations. MIMD al-
lows multiple independent programs to execute simultaneously sharing data among each
other through an MPI interface [76]. This interface provides an easy data exchange between
the disease models, written in C++, and the wheat crop growth model, written in Fortran
(Figure 9).

During the simulation, the CSM-NWheat sends to the three disease models the
daily values of leaf mass, seed mass and LAI state variables. Based on the weather data
and specific disease parameters, the disease models estimate the daily spore production
and cloud density. Whenever there are appropriate conditions for disease infection, spores
present on the field and the received values of the state variables are greater than zero, the



42

disease models simulate in daily steps the disease life cycle and returns to the wheat model
the respective damage through a specific damage variable. Lastly, the wheat model receives
the data and applies the reduction on the state variables and the process is repeated for each
day until the end of the simulation.
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Figure 9. Diagram of system functionality and communication.(1) The communication starts
with the CSM-NWheat sending to the three disease models the daily values of leaf mass,
seed mass and LAI state variables. (2) The disease models, on the other hand, are com-
puting the daily spore production and cloud density. (3) Whenever there are appropriate
conditions for disease infection, spores present on the field and the received values of the
state variables are greater than zero, the disease models simulate in daily steps the disease
life cycle and returns to the wheat model the respective damage through a specific damage
variable. Lastly, the wheat model receives the data and applies the reduction on the state
variables and the process is repeated for each day until the end of the simulation.

4.3.2 Experimental data

Field experiments were carried out in 2018 and 2019 at an experimental area of
Embrapa Trigo in the municipality of Coxilha, RS, Brazil. The first experiment was conducted
in an area with 10% slope and east exposure (28°11’11”S, 52°19’31”W and 688m above
sea level). The second experiment was carried in a flat area close to the first experiment
in succession to crotalaria crops (Crotalaria juncea L.) and turnip (Raphanus sativus L.),
respectively. The climate in the region is Cfa (Humid subtropical climate) according to the
classification of Köppen [77]. The soil is an Aluminoferric Red Latosol [78] with the 2019
experiment soil originating from horizon B, due to the removal of the A horizon in the past.
The experimental design was a randomized block design with five replications. The plots
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were 6-m long and 4.42-m wide, totaling 26.52 m², in 2018 and 15-m long and 2.21-m wide,
totaling 33.15 m² in 2019.

Before sowing, the areas were desiccated, with specific products for each condition.
The desiccation was carried out on 06/15/2018 and 07/02/2019, aiming at eliminating the
remaining invaders. The wheat cultivar TBIO Toruk used for both experiments and was
sowed on July 02, 2018 and June 24, 2019. The emergence date was on July 10, 2018
and July 04, 2019 while the harvesting date was on November 13, 2018 and November 11,
2019, respectively. The line spacing adopted was 17 cm in both experiments with a density
between 300-400 seeds m−2 in 2018 and 400-450 seeds m−2 in 2019. The wheat seeds
used did not receive phytosanitary treatment before sowing in 2018, while in 2019 they were
treated with difenoconazole, imidacloprid, and thiodicarb.

Nitrogen was broadcasted as urea at 120 N kg ha−1 in 2018 and 100 kg ha−1 in
2019 and both were divided into two applications. In the first experiment, the applications
were carried out on 08/10/2018 and 09/11/2018 and in the second experiment were on
07/26/2019 and 08/28/2019. There were four treatments which three had fungicide applica-
tion under different regimes and one with no disease control. In 2018, the fungicide Opera
and the insecticide Premio were sprayed at a 7-day, 14-day and 21-day intervals on the dis-
ease control treatment with a rate of 0,75L ha−1 and 0,05L ha−1, respectively. During the
experiment in 2019, the fungicide Nativo (0,6L ha−1) and the insecticide Premio (0,1L ha−1)
were applied under the same spraying regime used in the previous year. Each experiment
had the fungicide and insecticide solved in 150 L water for application per hectare.

The monitoring of wheat phenology started with the emergence of plants and was
carried out throughout the cycle. Weekly the phenological stages were recorded according
to the phenological scales of Zadoks et al. [79]. After emergence, the plants were collected
at 7-day intervals. The plants were cut close to the ground and packed in plastic bags. Upon
arriving in the laboratory the leaves of each plant were separated from the stem and fixed
in a white paper base, with transparent tape. Subsequently, the sheets were scanned in the
LICOR scanner, 3100-L model and 0.1 mm2 pixel resolution, and the images were used for
calibration and validation of the software. The plants were also dissected to determine the
dry matter mass of green leaves (LFWT), dry leaves (DLWT), stem (STWT), ears (EAWT)
and grains (SDWT). The leaf area index (LAI) was determined at 15-day intervals through
an optical planimeter to measure the leaf area (LA) of green leaves. The specific leaf area
was determined using the leaf area and the dry matter mass of green leaves:

LA = a+bLFWT (9)

where LA is the leaf area of wheat (cm2); LFWT is the dry matter mass of green
leaves (g); a and b are the linear and angular coefficients of the adjusted simple regression,
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respectively. In the present case, a is the coefficient and b is the specific leaf area for wheat
in cm2 g−1. The weekly LAI for wheat was calculated by:

LAIi =
LAIi

A
(10)

where LAIi is the leaf area index on day i; LAi is the leaf area of wheat on day i; A

is the soil area occupied by the sample of LFWT .

Grain yield was determined when the wheat plants reached maturity. Sampling
was done in the central part of the plot area, where the lines were not collected for dry
matter mass estimation. In both experiments, the grains were separated and the impurities
were removed by passing the sample in an electric blower, with controlled air flow. Then
the moisture content of the grains of each plot was determined (AL-101, AGROLOGIC). The
grain yield was corrected to 13% moisture and calculated for an area of one hectare. The
hectoliter weight was determined through the samples. A fraction of samples were used to
determine the thousand grains dry matter weight corrected to 13% humidity. The number of
grains per m−2 was calculated based on the resulting dry matter weight and the grain yield
of the plot.

For the monitoring of environmental variables, a micrometeorological tower was in-
stalled beside the experimental area in 2018 and about 300 m from the experiment in 2018.
Attached sensors to the tower measured temperature and relative humidity (AT2/RHT2,
Delta T), global incident solar radiation (ES2-05,Delta T) and rainfall (ARG100, Delta T)
(Figure 10). All sensors were connected to a datalogger (CR1000, Campbell Scientific, Inc),
with channel multiplexers and readings were taken every 30 seconds, with averages and/or
totalization, stored every 15 minutes during the whole wheat season. Relative humidity data
collected from stations in the county of Passo Fundo, Rio Grande do Sul, Brazil (28 °13’48.0"
S 52°24’36.0" W) was also incorporated to estimate the spore cloud density weeks before
the sowing dates of each experiment.

Leaf-wetness sensors (LWS - Dielectric Leaf Wetness Sensor, Deacon Devices)
were installed in metal rods one meter high with a sliding system according to the crop
growth and/or data objective. These sensors were placed after the sowing date for both
experiments at the base of the canopy level and 80 cm above ground. The sensors in the
base of the plant were weekly elevated to stay at the top of the canopy until it reached 40
cm above ground and the same level was kept until harvesting date. After that, the sensors
at 80 cm above ground were lowered the spike level and were weekly adjusted to continue
the leaf wetness readings at the top of the canopy level. When the crop reached maturity,
the sensors at the highest level were placed at the wheat ears level. Leaf wet periods were
calculated by the time the sensor reading showed values equal to or greater than 284 mV,
as specified in the sensor manual. The collected data from the leaf-wetness sensors was
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Figure 10. Instrumentation for crop, soil moisture content and weather data monitoring at an
experimental area in the municipality of Coxilha, RS, Brazil.

used to identify the daily number of hours that moisture was available on the plant’s surface
area for spore germination.

4.3.3 Disease data acquisition

Trainable Weka Segmentation (TWS) is a Fiji [80] plugin with state-of-the-art ma-
chine learning algorithms provided by WEKA [66] a toolkit for data analysis and predictive
modeling. TWS can classify pixels as belonging to a specific class determined by the user.
Weka provides methods such as supervised classification, regression, and clustering to de-
velop and build a machine learning classifier. The plugin offers an interface for interactive
learning and provides feedback to the user. Once the classifier is trained, it can be applied
to other images in an automatic way using features like macro programming provided by Fiji
platform.

Fiji and TWS were used to classify and measure the damage caused by fungal dis-
eases in wheat leaves. These tools allowed to compare and analyse the performance of sev-
eral machine learning and image processing approaches. Images are obtained by scanning
wheat leaves using a CCD photographic scanner. All images have a uniform background.
Initially, a classifier was interactively trained to classify pixels in three classes: healthy, necro-
sis, and background. This step comprises selecting the areas using the tools provided by Fiji
in a sample image and assigning them to one of the three classes available (Figure 4). This
step requires specialist knowledge to ensure classification process efficacy. Once classifier
training is finished, the developed model can be applied for classifying field collected leaves.
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Figure 11. Supervised classification approach for measuring the healthy and necrosis dam-
aged area in wheat leaves.

The supervised classification methodology applied to label and measure damaged
area in wheat leaves comprehends three phases: preprocessing, segmentation, and mea-
surement. In the first phase, preprocessing, the image is scaled down to increase the per-
formance of the classification process. Then, the scale of the image is defined by setting
the measure in cm corresponding to each pixel. In the segmentation phase, the classifier
is applied using the saved model and for each image is generated the probability maps
corresponding to each class. Using Otsu [81] global thresholding method for separating
pixels into two classes, foreground and background, those probability maps are converted
into binary images. Last, from the binary images, the values are obtained: image area (I),
background area (BK), necrosis area (N), and healthy area (H). In the measurement phase,
the leaf area (L) is calculated subtracting the background area (BK) from the image area (I).
Then, necrosis percentual (K) is obtained by K = N/L.



48

4.4 RESULTS

During the experiment, three different diseases were naturally occuring and affect-
ing the plots simultaneously: powdery mildew, tan spot and fusarium head blight. These
diseases were naturally occuring in the wheat field experiments in Coxilha, Rio Grande do
Sul, Brazil from 2018 to 2019. During the 2018 field experiment, yellow spots were observed
on the plant leaves and grains had a shriveled appearance, symptoms of tan spot and FHB
infection, respectively. On the other hand, common signs of powdery mildew infection such
as white powdery spots were not observed on the surface of the plants. In 2019, symptoms
of the three fungal diseases were observed on the plots however FHB had a mild expression
on grain quality loss. Table 4 describes the canopy weight and leaf area observed in each
treatment for the two corresponding years.
Table 4. Mean canopy weight and maximum leaf area from the plots with a 7-day, 14-day
and 21-day fungicide spraying regimes and control plot with no fungicide application.

Year Treatment
Canopy Weight

(Kg ha−1)
Maximum leaf area index

(m2 m−2)

2018

7-day interval 15194 5.9
14-day interval 15688 6.9
21-day interval 14687 5.9
No Fungicide 12829 5.0

2019

7-day interval 13079 6.5
14-day interval 12916 6.0
21-day interval 12084 5.7
No Fungicide 11582 6.1

During the simulation, the multiple GDM instances simulated in daily steps the
disease cycle of PM, TS and FHB to estimate their respective damage on the wheat crop.
The simulated damage was then applied through the pest coupling points to impact the
respective state variables. We assumed the spores were present in the field and the spore
cloud density was estimated using the data collected by the leaf-wetness sensors 80 cm
above ground. The abiotic damage was only applied while having the favorable conditions
for infection according to the characteristics of each disease. Powdery mildew and tan spot
damage were applied to the leaf area state variable. Fusarium head blight damage was
applied to the seed mass state variable. Thus, FHB impacted the seed development when
the crop reached the grain filling stage.

In Figure 14, the simulation results for 2018 showed a maximum LAI of 4.2 m2 m−2

across the four treatments. LAI increased rapidly from 46 to 84 days after planting until it
reached the maximum LAI. Disease infection started to damage the crop 102 days after
planting at the end of ear growth stage, leading to a decrease in LAI up to final harvest
date. The simulated scenario with no fungicide application had the biggest reduction on
LAI caused by the fungal disease damage. However, considering the mean LAI values of
the plots, the model underestimated the LAI for this year. In 2019, all treatments reached a
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maximum LAI of 5.3 m2 m−2 at day 83 while pest damage was firstly observed 114 days after
planting. For this year, the model had a better performance with a slight underestimation of
the maximum LAI.

Figure 12. Simulated and measured leaf area index values in 2018 (a) and 2019 (b) for
the scenarios with fungicide spraying in intervals of 7-day, 14-day, 21-day and no fungicide
application.

The destruction of the leaf area resulted in a shortage of assimilate production,
which later in the simulation affected the growth of new leaves. This, consequently, reduced
the crop capacity of biomass and yield production. In 2018, the maximum canopy weight of
11417 kg ha−1 was observed on the 7-day fungicide spraying regime treatment compared
with the lowest yield simulated of 9073 kg ha−1 in the no fungicide application treatment.
Due to longer periods of lower humidity observed in 2019, the spore cloud density had a
significant reduction which led to a lesser severe damage on the wheat crop. In this year
the simulated 7-day spraying regime scenario also had the highest canopy weight of 13701
kg ha−1 and the no disease control scenario had the lowest canopy weight of 11639 kg ha−1

(Figure 13).
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Figure 13. Simulated and measured canopy weight in 2018 (a) and 2019 (b) for the scenarios
with fungicide spraying in intervals of 7-day, 14-day, 21-day and no fungicide application.

In 2018, a grain yield of 4405 kg ha−1 was observed on the 7-day fungicide spraying
regime while the simulated was 4473 kg ha−1. For the 14-day fungicide spraying regime a
4130 kg ha−1 grain yield was observed, whereas the model simulated 4174 kg ha−1. For
the 21-day fungicide spraying regime was observed a grain yield of 3870 kg ha−1 while the
simulation estimated 3715 kg ha−1. Regarding the treatment with no fungicide application
was observed a yield of 3278 kg ha−1. The model simulated for the same treatment a grain
yield of 3121 kg ha−1.

The grain yield in 2019 was, in general, higher than in 2018. In 2019 the observed
grain yield was 5041, 4675, 4488 and 4303 kg ha−1 respectively for the treatments with
fungicide spraying in intervals of 7-day, 14-day, 21-day and no fungicide application. The
model simulated for the same treatments grain yield of 5107, 4886, 4499 and 4314 kg ha−1

respectively. For both years, the model was capable of simulating canopy weight and yield
similarly to the values measured in each treatment. Table 5 details the simulation results
outputs for grain yield.
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Figure 14. Observed versus simulated grain yields with the coupled DSSAT-NWheat for
experiments carried out in Coxilha, RS, Brazil.

4.5 DISCUSSION

One of the objectives of this work was to estimate and combine through a dynamic
approach the harmful effects of simultaneous diseases on wheat growth and yield. Most
of the wheat agro-physiological models were created primarily to estimate the crop growth
disregarding pest and disease impact on crop development and growth processes [18, 56,
58, 19]. Recently pest damage started to be incorporated into these models based on
observed data and simple mechanistic approaches [15, 17]. The disease models used in
this study were designed and parameterized to mimic the cycle of fungal diseases based on
cohorts [82] and estimate the damaging effects on wheat crops. Through the MPI interface,
the wheat crop growth model and the disease models were coupled into a complex structure
(Figure 9). The exchange of messages between models, without modifying the wheat model
source code, allowed the communication among those models during execution.

The case studies have shown how this multiple model approach is capable of simu-
lating pest and disease damage. The biotic stress of powdery mildew and tan spot impacted
the leaf area index and, consequently, the crop yield while FHB reduced the crop grain mass.
Besides the disease cycle, the disease models also considered during the simulation sev-
eral factors such as cultivar resistance and infection efficiency. For both years, the modified
model simulated correctly grain yield. A more severe damage on yield was measured and
simulated for 2018 (Table 5) which is likely due to the longer periods of high humidity and
precipitation which provided more favorable conditions for fungal infection. Canopy weight
value was also well simulated in 2019 and slightly underestimated in 2018 by the model.
However, the LAI pattern observed was underestimated for both years, especially in 2018.
The CSM-NWheat model did not estimate a LAI growth as observed which may be cor-
related to the model tendency to underestimate the crop LAI production [19]. Overall, the
response of this coupling approach nevertheless appears to be reliable with respect to this
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evaluation phase. The resulting yield loss was comparable with the measured data showing
the capability of the model for simulating the FHB, PM, and TS diseases.

Results of this work also illustrate the capability of connecting a wheat model to
communicate with multiple independent diseases models through a MPI interface. The mod-
ified model can now estimate the impact on crop growth and yield. The simulated inoculum
on this research did not take into account externally originated spores due to the complexity
of estimating spore production outside the simulation environment. Different scenarios of
initial inoculum density could be further explored using this approach. More testing should
be performed to determine if the developed method can properly estimate the effect of these
diseases on other regions with different soil properties, environment conditions and fertilizer
application regimes.

4.6 CONCLUSION

This work provides a multi-model approach for simulating the damage effect of
powdery mildew (Blumeria graminis f. sp. tritici), tan spot (Pyrenophora tritici-repentis) and
fusarium head blight (Gibberella zeae). Each disease was simulated using independent
models, driven by factors associated with the pathogen and environmental conditions. A
MPI Interface allowed the communication between the wheat crop model and the disease
models. The data exchange among these models were given in daily steps for which the
CSM-NWheat broadcasted the daily leaf area and seed mass while the disease models es-
timated the infection and damage rates. These disease damage rates were communicated
to the selected disease coupling point inside the crop growth model to reduce the leaf area
or seed mass state variables. Powdery mildew and tan spot damage impacted the simulated
wheat leaf area and, consequently, had an effect on grain production. Fusarium head blight
damage was applied at the grain filling stage to impact the daily seed mass, reducing the
wheat grain yield. The multi-model approach presented in this work was tested successfully
using field experiments in Brazil. The results demonstrated the coupled model’s capability to
simulate the fungal infection damage on crop growth and, specially, yield. The method de-
scribed can be used in future studies as a decision support system for simulating the impact
of powdery mildew, tan spot and fusarium head blight or, an example for coupling distinct
models to simulate the effects of pests and diseases on wheat crops.
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5. CONCLUSION AND FUTURE WORK

Coupling pests and diseases models with crop growth models is a major step to
produce more precise simulations under real farm conditions. This work extended the use
of pest and disease models and developed a multi-model approach to estimate the effects
of several pests on grain yield. The communication approach demonstrated capability to
link three disease models and predict crop response to wheat blast infection in multiple
locations. This is the first empirical study to use a multi-model approach able to predict
the impact of pests on wheat yield. This will extend the use of crop models in conjunction
with disease models to comprehend a broad range of problems often seen in the real world.
The final objective of this work was to help improve the predictions of production and assist
on the decision making. The technology used in this study proves to be the potential for
collaborative work within the crop modeling community.

The communication structure has potential to couple DSSAT crop models to other
disease models. Besides, fungal diseases such as rice blast have similar characteristics
and behaviors as Magnaporthe oryzae triticum [83]. Thus, this approach can also simulate
fungal diseases in different crops with adjustments in the disease parameters. Future work
is planned to develop the coupling point to the CERES-Rice [58], a rice simulation model
within the Cropping System Model of DSSAT, with pest and disease models and estimate
the effects of rice blast [84] on crop growth and development. Additionally, the use of hourly
data of relative humidity may also improve the simulation results of this work.

This work can also be applied for simulating in a regional or even global scale
the impact of several pests and pathogens on wheat. This would include measuring its
performance in other regions and climates. Through the use of forecast weather data it is
possible to simulate several future scenarios and help improve decision making by identifying
an appropriate time-window for fungicide application. This could also work in conjunction
with integrated pest control techniques to assist on crop management of wheat fields. The
technology used in this study proves to be potential for collaborative work within the crop
modeling community allowing researchers to simulate the interactions of pests and diseases
with wheat growth.
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ATTACHMENT A – APPENDIX

The following is the CSM-NWheat source code to estimate pest and disease dam-
age effect on crop growth:

Figure 15. Source code to apply daily pest and disease damage to LAI and leaf mass.

Figure 16. Source code to apply daily pest and disease damage to stem mass.

Figure 17. Source code to apply daily pest and disease damage to root mass.

Figure 18. Source code to apply daily pest and disease damage to seed mass.

Figure 19. Source code to simulate leaf area necrosis and apply daily damage to the healthy
leaf area.

Figure 20. Source code to apply daily pest and disease damage and reduce the potential
dry matter production.
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Figure 21. Source code to apply daily pest and disease damage that affects all plant parts.





 

 


